Optimal. Leaf size=28 \[ \frac {e^{16} \left (-e^{3 x}+\frac {3}{x}+\frac {5}{e^3 x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6, 12, 6688, 14, 2197} \begin {gather*} \frac {e^{13} \left (5+3 e^3\right )}{x^2}-\frac {e^{3 x+16}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2197
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{13} \left (5+3 e^3-e^{3+3 x} x\right ) \left (10+6 e^3+e^{3+3 x} \left (-x+3 x^2\right )\right )}{x^2 \left (\left (-5-3 e^3\right ) x+e^{3+3 x} x^2\right )} \, dx\\ &=e^{13} \int \frac {\left (5+3 e^3-e^{3+3 x} x\right ) \left (10+6 e^3+e^{3+3 x} \left (-x+3 x^2\right )\right )}{x^2 \left (\left (-5-3 e^3\right ) x+e^{3+3 x} x^2\right )} \, dx\\ &=e^{13} \int \frac {-10 \left (1+\frac {3 e^3}{5}\right )+e^{3+3 x} \left (x-3 x^2\right )}{x^3} \, dx\\ &=e^{13} \int \left (-\frac {2 \left (5+3 e^3\right )}{x^3}-\frac {e^{3+3 x} (-1+3 x)}{x^2}\right ) \, dx\\ &=\frac {e^{13} \left (5+3 e^3\right )}{x^2}-e^{13} \int \frac {e^{3+3 x} (-1+3 x)}{x^2} \, dx\\ &=\frac {e^{13} \left (5+3 e^3\right )}{x^2}-\frac {e^{16+3 x}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 0.86 \begin {gather*} -\frac {e^{13} \left (-5-3 e^3+e^{3+3 x} x\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 22, normalized size = 0.79 \begin {gather*} -\frac {x e^{\left (3 \, x + 16\right )} - 3 \, e^{16} - 5 \, e^{13}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 22, normalized size = 0.79 \begin {gather*} -\frac {x e^{\left (3 \, x + 16\right )} - 3 \, e^{16} - 5 \, e^{13}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 28, normalized size = 1.00
method | result | size |
norman | \(\frac {{\mathrm e}^{-3} {\mathrm e}^{16} \left (3 \,{\mathrm e}^{3}+5\right )-x \,{\mathrm e}^{16} {\mathrm e}^{3 x}}{x^{2}}\) | \(28\) |
risch | \(-\frac {\left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right ) {\mathrm e}^{13+\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )}{x^{2}}\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )}{x^{2}}\right )^{2} \mathrm {csgn}\left (i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )\right )}{2}-i \mathrm {csgn}\left (\frac {i \left (-5+\left (x \,{\mathrm e}^{3 x}-3\right ) {\mathrm e}^{3}\right )}{x^{2}}\right )^{2} \pi }}{x^{2}}\) | \(247\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 21, normalized size = 0.75 \begin {gather*} -\frac {{\left (x e^{\left (3 \, x + 3\right )} - 3 \, e^{3} - 5\right )} e^{13}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.36, size = 24, normalized size = 0.86 \begin {gather*} -\frac {x\,{\mathrm {e}}^{3\,x+16}-{\mathrm {e}}^{13}\,\left (3\,{\mathrm {e}}^3+5\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 0.96 \begin {gather*} - \frac {e^{16} e^{3 x}}{x} - \frac {- 6 e^{16} - 10 e^{13}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________