Optimal. Leaf size=22 \[ -4-e^{-2-e^x+x}+x+\frac {x^2}{16} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 37, normalized size of antiderivative = 1.68, number of steps used = 6, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {12, 2282, 2176, 2194} \begin {gather*} \frac {x^2}{16}+x-e^{-e^x-2}+e^{-e^x-2} \left (1-e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \left (8+e^{-2-e^x+x} \left (-8+8 e^x\right )+x\right ) \, dx\\ &=x+\frac {x^2}{16}+\frac {1}{8} \int e^{-2-e^x+x} \left (-8+8 e^x\right ) \, dx\\ &=x+\frac {x^2}{16}+\frac {1}{8} \operatorname {Subst}\left (\int 8 e^{-2-x} (-1+x) \, dx,x,e^x\right )\\ &=x+\frac {x^2}{16}+\operatorname {Subst}\left (\int e^{-2-x} (-1+x) \, dx,x,e^x\right )\\ &=e^{-2-e^x} \left (1-e^x\right )+x+\frac {x^2}{16}+\operatorname {Subst}\left (\int e^{-2-x} \, dx,x,e^x\right )\\ &=-e^{-2-e^x}+e^{-2-e^x} \left (1-e^x\right )+x+\frac {x^2}{16}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 0.95 \begin {gather*} -e^{-2-e^x+x}+x+\frac {x^2}{16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 17, normalized size = 0.77 \begin {gather*} \frac {1}{16} \, x^{2} + x - e^{\left (x - e^{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 17, normalized size = 0.77 \begin {gather*} \frac {1}{16} \, x^{2} + x - e^{\left (x - e^{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.82
method | result | size |
norman | \(x +\frac {x^{2}}{16}-{\mathrm e}^{-{\mathrm e}^{x}+x -2}\) | \(18\) |
risch | \(x +\frac {x^{2}}{16}-{\mathrm e}^{-{\mathrm e}^{x}+x -2}\) | \(18\) |
default | \(x +\frac {x^{2}}{16}+{\mathrm e}^{-2} \left (-{\mathrm e}^{-{\mathrm e}^{x}} {\mathrm e}^{x}-{\mathrm e}^{-{\mathrm e}^{x}}\right )+{\mathrm e}^{-2} {\mathrm e}^{-{\mathrm e}^{x}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 17, normalized size = 0.77 \begin {gather*} \frac {1}{16} \, x^{2} + x - e^{\left (x - e^{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.82 \begin {gather*} x+\frac {x^2}{16}-{\mathrm {e}}^{-2}\,{\mathrm {e}}^{-{\mathrm {e}}^x}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.64 \begin {gather*} \frac {x^{2}}{16} + x - e^{x - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________