Optimal. Leaf size=27 \[ -\frac {e^{4/3}}{3}+2 \left (\frac {1}{\left (e^{20}-x\right ) x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {1594, 27, 1620} \begin {gather*} 2 x+\frac {2}{e^{20} \left (e^{20}-x\right )}+\frac {2}{e^{20} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+2 e^{40} x^2+2 x^4+e^{20} \left (-2-4 x^3\right )}{x^2 \left (e^{40}-2 e^{20} x+x^2\right )} \, dx\\ &=\int \frac {4 x+2 e^{40} x^2+2 x^4+e^{20} \left (-2-4 x^3\right )}{x^2 \left (-e^{20}+x\right )^2} \, dx\\ &=\int \left (2+\frac {2}{e^{20} \left (e^{20}-x\right )^2}-\frac {2}{e^{20} x^2}\right ) \, dx\\ &=\frac {2}{e^{20} \left (e^{20}-x\right )}+\frac {2}{e^{20} x}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 0.93 \begin {gather*} 2 \left (\frac {1}{e^{20} x}+x-\frac {1}{e^{20} \left (-e^{20}+x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 25, normalized size = 0.93 \begin {gather*} \frac {2 \, {\left (x^{3} - x^{2} e^{20} - 1\right )}}{x^{2} - x e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 18, normalized size = 0.67
method | result | size |
risch | \(2 x +\frac {2}{x \left ({\mathrm e}^{20}-x \right )}\) | \(18\) |
gosper | \(\frac {-2 x^{3}+2+2 \,{\mathrm e}^{40} x}{x \left ({\mathrm e}^{20}-x \right )}\) | \(29\) |
norman | \(\frac {-2 x^{3}+2+2 \,{\mathrm e}^{40} x}{x \left ({\mathrm e}^{20}-x \right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 17, normalized size = 0.63 \begin {gather*} 2 \, x - \frac {2}{x^{2} - x e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.12, size = 17, normalized size = 0.63 \begin {gather*} 2\,x-\frac {2}{x\,\left (x-{\mathrm {e}}^{20}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 12, normalized size = 0.44 \begin {gather*} 2 x - \frac {2}{x^{2} - x e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________