Optimal. Leaf size=18 \[ \left (47+\frac {e^x}{\left (1-\frac {1}{x}+x\right )^2}\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 37.39, antiderivative size = 2487, normalized size of antiderivative = 138.17, number of steps used = 908, number of rules used = 6, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6688, 12, 6742, 2177, 2178, 2268}
result too large to display
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2268
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^x x \left (2+x+x^2-x^3\right ) \left (47-94 x+\left (-47+e^x\right ) x^2+94 x^3+47 x^4\right )}{\left (1-x-x^2\right )^5} \, dx\\ &=2 \int \frac {e^x x \left (2+x+x^2-x^3\right ) \left (47-94 x+\left (-47+e^x\right ) x^2+94 x^3+47 x^4\right )}{\left (1-x-x^2\right )^5} \, dx\\ &=2 \int \left (\frac {47 e^x (-2+x) x \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}-\frac {94 e^x (-2+x) x^2 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}-\frac {47 e^x (-2+x) x^3 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}+\frac {e^{2 x} (-2+x) x^3 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}+\frac {94 e^x (-2+x) x^4 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}+\frac {47 e^x (-2+x) x^5 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5}\right ) \, dx\\ &=2 \int \frac {e^{2 x} (-2+x) x^3 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx+94 \int \frac {e^x (-2+x) x \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx-94 \int \frac {e^x (-2+x) x^3 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx+94 \int \frac {e^x (-2+x) x^5 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx-188 \int \frac {e^x (-2+x) x^2 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx+188 \int \frac {e^x (-2+x) x^4 \left (1+x+x^2\right )}{\left (-1+x+x^2\right )^5} \, dx\\ &=2 \int \left (-\frac {2 e^{2 x} (-4+7 x)}{\left (-1+x+x^2\right )^5}+\frac {e^{2 x} (14-15 x)}{\left (-1+x+x^2\right )^4}+\frac {e^{2 x} (7-4 x)}{\left (-1+x+x^2\right )^3}+\frac {e^{2 x}}{\left (-1+x+x^2\right )^2}\right ) \, dx+94 \int \left (-\frac {2 e^x (-1+3 x)}{\left (-1+x+x^2\right )^5}-\frac {3 e^x (-1+x)}{\left (-1+x+x^2\right )^4}+\frac {e^x}{\left (-1+x+x^2\right )^3}\right ) \, dx-94 \int \left (-\frac {2 e^x (-4+7 x)}{\left (-1+x+x^2\right )^5}+\frac {e^x (14-15 x)}{\left (-1+x+x^2\right )^4}+\frac {e^x (7-4 x)}{\left (-1+x+x^2\right )^3}+\frac {e^x}{\left (-1+x+x^2\right )^2}\right ) \, dx+94 \int \left (-\frac {2 e^x (-11+18 x)}{\left (-1+x+x^2\right )^5}+\frac {e^x (51-58 x)}{\left (-1+x+x^2\right )^4}-\frac {10 e^x (-4+3 x)}{\left (-1+x+x^2\right )^3}+\frac {e^x (12-5 x)}{\left (-1+x+x^2\right )^2}+\frac {e^x}{-1+x+x^2}\right ) \, dx-188 \int \left (\frac {2 e^x (-3+4 x)}{\left (-1+x+x^2\right )^5}+\frac {3 e^x (-3+2 x)}{\left (-1+x+x^2\right )^4}+\frac {e^x (-3+x)}{\left (-1+x+x^2\right )^3}\right ) \, dx+188 \int \left (\frac {2 e^x (-7+11 x)}{\left (-1+x+x^2\right )^5}+\frac {29 e^x (-1+x)}{\left (-1+x+x^2\right )^4}+\frac {e^x (-19+11 x)}{\left (-1+x+x^2\right )^3}+\frac {e^x (-4+x)}{\left (-1+x+x^2\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{2 x} (14-15 x)}{\left (-1+x+x^2\right )^4} \, dx+2 \int \frac {e^{2 x} (7-4 x)}{\left (-1+x+x^2\right )^3} \, dx+2 \int \frac {e^{2 x}}{\left (-1+x+x^2\right )^2} \, dx-4 \int \frac {e^{2 x} (-4+7 x)}{\left (-1+x+x^2\right )^5} \, dx+94 \int \frac {e^x (51-58 x)}{\left (-1+x+x^2\right )^4} \, dx-94 \int \frac {e^x (14-15 x)}{\left (-1+x+x^2\right )^4} \, dx+94 \int \frac {e^x}{\left (-1+x+x^2\right )^3} \, dx-94 \int \frac {e^x (7-4 x)}{\left (-1+x+x^2\right )^3} \, dx-94 \int \frac {e^x}{\left (-1+x+x^2\right )^2} \, dx+94 \int \frac {e^x (12-5 x)}{\left (-1+x+x^2\right )^2} \, dx+94 \int \frac {e^x}{-1+x+x^2} \, dx-188 \int \frac {e^x (-1+3 x)}{\left (-1+x+x^2\right )^5} \, dx+188 \int \frac {e^x (-4+7 x)}{\left (-1+x+x^2\right )^5} \, dx-188 \int \frac {e^x (-11+18 x)}{\left (-1+x+x^2\right )^5} \, dx-188 \int \frac {e^x (-3+x)}{\left (-1+x+x^2\right )^3} \, dx+188 \int \frac {e^x (-19+11 x)}{\left (-1+x+x^2\right )^3} \, dx+188 \int \frac {e^x (-4+x)}{\left (-1+x+x^2\right )^2} \, dx-282 \int \frac {e^x (-1+x)}{\left (-1+x+x^2\right )^4} \, dx-376 \int \frac {e^x (-3+4 x)}{\left (-1+x+x^2\right )^5} \, dx+376 \int \frac {e^x (-7+11 x)}{\left (-1+x+x^2\right )^5} \, dx-564 \int \frac {e^x (-3+2 x)}{\left (-1+x+x^2\right )^4} \, dx-940 \int \frac {e^x (-4+3 x)}{\left (-1+x+x^2\right )^3} \, dx+5452 \int \frac {e^x (-1+x)}{\left (-1+x+x^2\right )^4} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 5.04, size = 39, normalized size = 2.17 \begin {gather*} \frac {e^x x^2 \left (94-188 x+\left (-94+e^x\right ) x^2+188 x^3+94 x^4\right )}{\left (-1+x+x^2\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 76, normalized size = 4.22 \begin {gather*} \frac {x^{4} e^{\left (2 \, x\right )} + 94 \, {\left (x^{6} + 2 \, x^{5} - x^{4} - 2 \, x^{3} + x^{2}\right )} e^{x}}{x^{8} + 4 \, x^{7} + 2 \, x^{6} - 8 \, x^{5} - 5 \, x^{4} + 8 \, x^{3} + 2 \, x^{2} - 4 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 85, normalized size = 4.72 \begin {gather*} \frac {94 \, x^{6} e^{x} + 188 \, x^{5} e^{x} + x^{4} e^{\left (2 \, x\right )} - 94 \, x^{4} e^{x} - 188 \, x^{3} e^{x} + 94 \, x^{2} e^{x}}{x^{8} + 4 \, x^{7} + 2 \, x^{6} - 8 \, x^{5} - 5 \, x^{4} + 8 \, x^{3} + 2 \, x^{2} - 4 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 33, normalized size = 1.83
method | result | size |
risch | \(\frac {x^{4} {\mathrm e}^{2 x}}{\left (x^{2}+x -1\right )^{4}}+\frac {94 x^{2} {\mathrm e}^{x}}{\left (x^{2}+x -1\right )^{2}}\) | \(33\) |
norman | \(\frac {{\mathrm e}^{2 x} x^{4}+188 x^{5} {\mathrm e}^{x}+94 x^{6} {\mathrm e}^{x}+94 \,{\mathrm e}^{x} x^{2}-188 \,{\mathrm e}^{x} x^{3}-94 \,{\mathrm e}^{x} x^{4}}{\left (x^{2}+x -1\right )^{4}}\) | \(54\) |
default | \(-\frac {47 \,{\mathrm e}^{x} \left (7 x^{7}-53 x^{6}-377 x^{5}-870 x^{4}+685 x^{3}+446 x^{2}-514 x +119\right )}{300 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}-\frac {{\mathrm e}^{2 x} \left (12 x^{7}+2 x^{6}-142 x^{5}-205 x^{4}+240 x^{3}+96 x^{2}-154 x +39\right )}{250 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}-\frac {47 \,{\mathrm e}^{x} \left (4 x^{7}-241 x^{6}-1269 x^{5}+185 x^{4}+1145 x^{3}-263 x^{2}-333 x +118\right )}{375 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}-\frac {{\mathrm e}^{2 x} \left (128 x^{7}+538 x^{6}+552 x^{5}-870 x^{4}-340 x^{3}+574 x^{2}-126 x -9\right )}{750 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}-\frac {47 \,{\mathrm e}^{x} \left (437 x^{7}+1952 x^{6}-232 x^{5}-2445 x^{4}+560 x^{3}+1111 x^{2}-599 x +79\right )}{1500 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}-\frac {47 \,{\mathrm e}^{x} \left (399 x^{7}-971 x^{6}+761 x^{5}+2960 x^{4}-2405 x^{3}-1828 x^{2}+2152 x -517\right )}{1500 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}+\frac {47 \,{\mathrm e}^{x} \left (253 x^{7}+788 x^{6}-108 x^{5}-1705 x^{4}+140 x^{3}+1459 x^{2}-531 x +151\right )}{750 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}+\frac {47 \,{\mathrm e}^{x} \left (109 x^{7}+339 x^{6}-49 x^{5}-740 x^{4}+45 x^{3}+552 x^{2}-668 x +153\right )}{500 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}+\frac {47 \,{\mathrm e}^{x} \left (18 x^{7}+53 x^{6}-23 x^{5}-155 x^{4}-85 x^{3}-371 x^{2}+239 x -44\right )}{500 \left (x^{8}+4 x^{7}+2 x^{6}-8 x^{5}-5 x^{4}+8 x^{3}+2 x^{2}-4 x +1\right )}+\frac {{\mathrm e}^{2 x} \left (56 x^{7}+176 x^{6}+4 x^{5}-290 x^{4}+120 x^{3}+448 x^{2}-302 x +57\right )}{375 x^{8}+1500 x^{7}+750 x^{6}-3000 x^{5}-1875 x^{4}+3000 x^{3}+750 x^{2}-1500 x +375}+\frac {{\mathrm e}^{2 x} \left (52 x^{7}+192 x^{6}+118 x^{5}-155 x^{4}+140 x^{3}-34 x^{2}+16 x -6\right )}{750 x^{8}+3000 x^{7}+1500 x^{6}-6000 x^{5}-3750 x^{4}+6000 x^{3}+1500 x^{2}-3000 x +750}\) | \(879\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 76, normalized size = 4.22 \begin {gather*} \frac {x^{4} e^{\left (2 \, x\right )} + 94 \, {\left (x^{6} + 2 \, x^{5} - x^{4} - 2 \, x^{3} + x^{2}\right )} e^{x}}{x^{8} + 4 \, x^{7} + 2 \, x^{6} - 8 \, x^{5} - 5 \, x^{4} + 8 \, x^{3} + 2 \, x^{2} - 4 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 40, normalized size = 2.22 \begin {gather*} \frac {x^2\,{\mathrm {e}}^x\,\left (x^2\,{\mathrm {e}}^x-188\,x-94\,x^2+188\,x^3+94\,x^4+94\right )}{{\left (x^2+x-1\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 133, normalized size = 7.39 \begin {gather*} \frac {\left (x^{8} + 2 x^{7} - x^{6} - 2 x^{5} + x^{4}\right ) e^{2 x} + \left (94 x^{10} + 376 x^{9} + 188 x^{8} - 752 x^{7} - 470 x^{6} + 752 x^{5} + 188 x^{4} - 376 x^{3} + 94 x^{2}\right ) e^{x}}{x^{12} + 6 x^{11} + 9 x^{10} - 10 x^{9} - 30 x^{8} + 6 x^{7} + 41 x^{6} - 6 x^{5} - 30 x^{4} + 10 x^{3} + 9 x^{2} - 6 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________