Optimal. Leaf size=25 \[ 4 \left (3+\left (\frac {3}{x}+x-\frac {4}{25} \left (x+x^2\right )\right )^2\right )+\log (2) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {12, 14} \begin {gather*} \frac {64 x^4}{625}-\frac {672 x^3}{625}+\frac {1764 x^2}{625}+\frac {36}{x^2}-\frac {96 x}{25} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{625} \int \frac {-45000-2400 x^3+3528 x^4-2016 x^5+256 x^6}{x^3} \, dx\\ &=\frac {1}{625} \int \left (-2400-\frac {45000}{x^3}+3528 x-2016 x^2+256 x^3\right ) \, dx\\ &=\frac {36}{x^2}-\frac {96 x}{25}+\frac {1764 x^2}{625}-\frac {672 x^3}{625}+\frac {64 x^4}{625}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 32, normalized size = 1.28 \begin {gather*} \frac {8}{625} \left (\frac {5625}{2 x^2}-300 x+\frac {441 x^2}{2}-84 x^3+8 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 27, normalized size = 1.08 \begin {gather*} \frac {4 \, {\left (16 \, x^{6} - 168 \, x^{5} + 441 \, x^{4} - 600 \, x^{3} + 5625\right )}}{625 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 24, normalized size = 0.96 \begin {gather*} \frac {64}{625} \, x^{4} - \frac {672}{625} \, x^{3} + \frac {1764}{625} \, x^{2} - \frac {96}{25} \, x + \frac {36}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 25, normalized size = 1.00
method | result | size |
default | \(\frac {64 x^{4}}{625}-\frac {672 x^{3}}{625}+\frac {1764 x^{2}}{625}-\frac {96 x}{25}+\frac {36}{x^{2}}\) | \(25\) |
risch | \(\frac {64 x^{4}}{625}-\frac {672 x^{3}}{625}+\frac {1764 x^{2}}{625}-\frac {96 x}{25}+\frac {36}{x^{2}}\) | \(25\) |
norman | \(\frac {36-\frac {96}{25} x^{3}+\frac {1764}{625} x^{4}-\frac {672}{625} x^{5}+\frac {64}{625} x^{6}}{x^{2}}\) | \(27\) |
gosper | \(\frac {36-\frac {96}{25} x^{3}+\frac {1764}{625} x^{4}-\frac {672}{625} x^{5}+\frac {64}{625} x^{6}}{x^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 24, normalized size = 0.96 \begin {gather*} \frac {64}{625} \, x^{4} - \frac {672}{625} \, x^{3} + \frac {1764}{625} \, x^{2} - \frac {96}{25} \, x + \frac {36}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.66, size = 24, normalized size = 0.96 \begin {gather*} \frac {36}{x^2}-\frac {96\,x}{25}+\frac {1764\,x^2}{625}-\frac {672\,x^3}{625}+\frac {64\,x^4}{625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 29, normalized size = 1.16 \begin {gather*} \frac {64 x^{4}}{625} - \frac {672 x^{3}}{625} + \frac {1764 x^{2}}{625} - \frac {96 x}{25} + \frac {36}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________