Optimal. Leaf size=26 \[ \frac {4 x \left (5 x+\frac {x^2}{16}\right )}{4+e^x+\frac {4}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {960 x^2+656 x^3+12 x^4+e^x \left (160 x^3-77 x^4-x^5\right )}{64+128 x+64 x^2+4 e^{2 x} x^2+e^x \left (32 x+32 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (960+16 \left (41+10 e^x\right ) x-\left (-12+77 e^x\right ) x^2-e^x x^3\right )}{4 \left (4+\left (4+e^x\right ) x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {x^2 \left (960+16 \left (41+10 e^x\right ) x-\left (-12+77 e^x\right ) x^2-e^x x^3\right )}{\left (4+\left (4+e^x\right ) x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {x^2 \left (-160+77 x+x^2\right )}{4+4 x+e^x x}+\frac {4 x^2 \left (80+81 x+81 x^2+x^3\right )}{\left (4+4 x+e^x x\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {x^2 \left (-160+77 x+x^2\right )}{4+4 x+e^x x} \, dx\right )+\int \frac {x^2 \left (80+81 x+81 x^2+x^3\right )}{\left (4+4 x+e^x x\right )^2} \, dx\\ &=-\left (\frac {1}{4} \int \left (-\frac {160 x^2}{4+4 x+e^x x}+\frac {77 x^3}{4+4 x+e^x x}+\frac {x^4}{4+4 x+e^x x}\right ) \, dx\right )+\int \left (\frac {80 x^2}{\left (4+4 x+e^x x\right )^2}+\frac {81 x^3}{\left (4+4 x+e^x x\right )^2}+\frac {81 x^4}{\left (4+4 x+e^x x\right )^2}+\frac {x^5}{\left (4+4 x+e^x x\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {x^4}{4+4 x+e^x x} \, dx\right )-\frac {77}{4} \int \frac {x^3}{4+4 x+e^x x} \, dx+40 \int \frac {x^2}{4+4 x+e^x x} \, dx+80 \int \frac {x^2}{\left (4+4 x+e^x x\right )^2} \, dx+81 \int \frac {x^3}{\left (4+4 x+e^x x\right )^2} \, dx+81 \int \frac {x^4}{\left (4+4 x+e^x x\right )^2} \, dx+\int \frac {x^5}{\left (4+4 x+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^3 (80+x)}{4 \left (4+4 x+e^x x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{4} + 80 \, x^{3}}{4 \, {\left (x e^{x} + 4 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{4} + 80 \, x^{3}}{4 \, {\left (x e^{x} + 4 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.77
method | result | size |
risch | \(\frac {\left (x +80\right ) x^{3}}{4 \,{\mathrm e}^{x} x +16 x +16}\) | \(20\) |
norman | \(\frac {20 x^{3}+\frac {1}{4} x^{4}}{{\mathrm e}^{x} x +4 x +4}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{4} + 80 \, x^{3}}{4 \, {\left (x e^{x} + 4 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 19, normalized size = 0.73 \begin {gather*} \frac {x^3\,\left (x+80\right )}{4\,\left (4\,x+x\,{\mathrm {e}}^x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.73 \begin {gather*} \frac {x^{4} + 80 x^{3}}{4 x e^{x} + 16 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________