Optimal. Leaf size=25 \[ \log \left ((-4+\log (x)) \left (\log (5)+\frac {\log ^2(x)}{x}\right ) \log \left (\left (4+e^5\right ) x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x \log (5)+x \log (5) \log (x)-4 \log ^2(x)+\log ^3(x)+\left (x \log (5)-8 \log (x)+7 \log ^2(x)-\log ^3(x)\right ) \log \left (4 x+e^5 x\right )}{\left (-4 x^2 \log (5)+x^2 \log (5) \log (x)-4 x \log ^2(x)+x \log ^3(x)\right ) \log \left (4 x+e^5 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x \log (5)+x \log (5) \log (x)-4 \log ^2(x)+\log ^3(x)+\left (x \log (5)-8 \log (x)+7 \log ^2(x)-\log ^3(x)\right ) \log \left (4 x+e^5 x\right )}{\left (-4 x^2 \log (5)+x^2 \log (5) \log (x)-4 x \log ^2(x)+x \log ^3(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ &=\int \frac {4 x \log (5)-x \log (5) \log (x)+4 \log ^2(x)-\log ^3(x)-\left (x \log (5)-8 \log (x)+7 \log ^2(x)-\log ^3(x)\right ) \log \left (4 x+e^5 x\right )}{x (4-\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ &=\int \left (\frac {x \log (5)-8 \log (x)+7 \log ^2(x)-\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right )}-\frac {4 \log (5)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )}+\frac {\log (5) \log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )}-\frac {4 \log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )}+\frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )}\right ) \, dx\\ &=-\left (4 \int \frac {\log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\right )+\log (5) \int \frac {\log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx-(4 \log (5)) \int \frac {1}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\int \frac {x \log (5)-8 \log (x)+7 \log ^2(x)-\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right )} \, dx+\int \frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ &=-\left (4 \int \frac {\log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\right )+\log (5) \int \frac {\log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx-(4 \log (5)) \int \frac {1}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\int \left (-\frac {1}{x}+\frac {1}{x (-4+\log (x))}+\frac {x \log (5)+2 \log (x)}{x \left (x \log (5)+\log ^2(x)\right )}\right ) \, dx+\int \frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ &=-\log (x)-4 \int \frac {\log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\log (5) \int \frac {\log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx-(4 \log (5)) \int \frac {1}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\int \frac {1}{x (-4+\log (x))} \, dx+\int \frac {x \log (5)+2 \log (x)}{x \left (x \log (5)+\log ^2(x)\right )} \, dx+\int \frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ &=-\log (x)+\log \left (x \log (5)+\log ^2(x)\right )-4 \int \frac {\log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\log (5) \int \frac {\log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx-(4 \log (5)) \int \frac {1}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\int \frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,-4+\log (x)\right )\\ &=-\log (x)+\log (4-\log (x))+\log \left (x \log (5)+\log ^2(x)\right )-4 \int \frac {\log ^2(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\log (5) \int \frac {\log (x)}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx-(4 \log (5)) \int \frac {1}{(-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx+\int \frac {\log ^3(x)}{x (-4+\log (x)) \left (x \log (5)+\log ^2(x)\right ) \log \left (\left (4+e^5\right ) x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 31, normalized size = 1.24 \begin {gather*} -\log (x)+\log (4-\log (x))+\log \left (x \log (5)+\log ^2(x)\right )+\log \left (\log \left (\left (4+e^5\right ) x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 29, normalized size = 1.16 \begin {gather*} \log \left (x \log \relax (5) + \log \relax (x)^{2}\right ) - \log \relax (x) + \log \left (\log \relax (x) + \log \left (e^{5} + 4\right )\right ) + \log \left (\log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.04, size = 74, normalized size = 2.96 \begin {gather*} \log \left (x \log \relax (5) \log \relax (x)^{2} + \log \relax (x)^{4} + x \log \relax (5) \log \relax (x) \log \left (e^{5} + 4\right ) + \log \relax (x)^{3} \log \left (e^{5} + 4\right ) - 4 \, x \log \relax (5) \log \relax (x) - 4 \, \log \relax (x)^{3} - 4 \, x \log \relax (5) \log \left (e^{5} + 4\right ) - 4 \, \log \relax (x)^{2} \log \left (e^{5} + 4\right )\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.16
method | result | size |
default | \(\ln \left (\ln \left (\left (4+{\mathrm e}^{5}\right ) x \right )\right )-\ln \relax (x )+\ln \left (\ln \relax (x )-4\right )+\ln \left (x \ln \relax (5)+\ln \relax (x )^{2}\right )\) | \(29\) |
risch | \(-\ln \relax (x )+\ln \left (\ln \relax (x )^{2} \ln \relax (5) x +\ln \relax (x )^{4}-4 x \ln \relax (5) \ln \relax (x )-4 \ln \relax (x )^{3}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.09, size = 29, normalized size = 1.16 \begin {gather*} \log \left (x \log \relax (5) + \log \relax (x)^{2}\right ) - \log \relax (x) + \log \left (\log \relax (x) + \log \left (e^{5} + 4\right )\right ) + \log \left (\log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\ln \left (4\,x+x\,{\mathrm {e}}^5\right )\,\left ({\ln \relax (x)}^3-7\,{\ln \relax (x)}^2+8\,\ln \relax (x)-x\,\ln \relax (5)\right )+4\,x\,\ln \relax (5)+4\,{\ln \relax (x)}^2-{\ln \relax (x)}^3-x\,\ln \relax (5)\,\ln \relax (x)}{\ln \left (4\,x+x\,{\mathrm {e}}^5\right )\,\left (-\ln \relax (5)\,x^2\,\ln \relax (x)+4\,\ln \relax (5)\,x^2-x\,{\ln \relax (x)}^3+4\,x\,{\ln \relax (x)}^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.90, size = 76, normalized size = 3.04 \begin {gather*} - \log {\relax (x )} + \log {\left (- 4 x \log {\relax (5 )} \log {\left (4 + e^{5} \right )} + \left (- 4 x \log {\relax (5 )} + x \log {\relax (5 )} \log {\left (4 + e^{5} \right )}\right ) \log {\relax (x )} + \left (x \log {\relax (5 )} - 4 \log {\left (4 + e^{5} \right )}\right ) \log {\relax (x )}^{2} + \log {\relax (x )}^{4} + \left (-4 + \log {\left (4 + e^{5} \right )}\right ) \log {\relax (x )}^{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________