Optimal. Leaf size=32 \[ e^{\frac {-\frac {2}{x}+\log (x)+(-x+\log (-x+3 (2+2 x)))^2}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 3.12, antiderivative size = 38, normalized size of antiderivative = 1.19, number of steps used = 2, number of rules used = 2, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {1593, 6706} \begin {gather*} \frac {x^{\frac {1}{x}} e^{-\frac {-x^3-x \log ^2(5 x+6)+2}{x^2}}}{(5 x+6)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-2+x^3+x \log (x)-2 x^2 \log (6+5 x)+x \log ^2(6+5 x)}{x^2}\right ) \left (24+26 x+5 x^2-4 x^3+5 x^4+\left (-6 x-5 x^2\right ) \log (x)+10 x^2 \log (6+5 x)+\left (-6 x-5 x^2\right ) \log ^2(6+5 x)\right )}{x^3 (6+5 x)} \, dx\\ &=\frac {e^{-\frac {2-x^3-x \log ^2(6+5 x)}{x^2}} x^{\frac {1}{x}}}{(6+5 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 34, normalized size = 1.06 \begin {gather*} \frac {e^{\frac {-2+x^3+x \log ^2(6+5 x)}{x^2}} x^{\frac {1}{x}}}{(6+5 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 35, normalized size = 1.09 \begin {gather*} e^{\left (\frac {x^{3} - 2 \, x^{2} \log \left (5 \, x + 6\right ) + x \log \left (5 \, x + 6\right )^{2} + x \log \relax (x) - 2}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.59, size = 34, normalized size = 1.06 \begin {gather*} e^{\left (x + \frac {\log \left (5 \, x + 6\right )^{2}}{x} + \frac {\log \relax (x)}{x} - \frac {2}{x^{2}} - 2 \, \log \left (5 \, x + 6\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 34, normalized size = 1.06
method | result | size |
risch | \(\frac {x^{\frac {1}{x}} {\mathrm e}^{\frac {x \ln \left (5 x +6\right )^{2}+x^{3}-2}{x^{2}}}}{\left (5 x +6\right )^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 39, normalized size = 1.22 \begin {gather*} \frac {e^{\left (x + \frac {\log \left (5 \, x + 6\right )^{2}}{x} + \frac {\log \relax (x)}{x} - \frac {2}{x^{2}}\right )}}{25 \, x^{2} + 60 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.96, size = 34, normalized size = 1.06 \begin {gather*} \frac {x^{1/x}\,{\mathrm {e}}^{-\frac {2}{x^2}}\,{\mathrm {e}}^{\frac {{\ln \left (5\,x+6\right )}^2}{x}}\,{\mathrm {e}}^x}{{\left (5\,x+6\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.86, size = 36, normalized size = 1.12 \begin {gather*} e^{\frac {x^{3} - 2 x^{2} \log {\left (5 x + 6 \right )} + x \log {\relax (x )} + x \log {\left (5 x + 6 \right )}^{2} - 2}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________