Optimal. Leaf size=26 \[ 2 \left (x+\frac {8-2 x+\log (x)}{12+\left (\sqrt [4]{e}+x\right ) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24+224 x+4 x^2+\sqrt [4]{e} (-16+4 x)+\left (-16 x+44 \sqrt [4]{e} x+48 x^2\right ) \log (x)+\left (-2 x+2 \sqrt {e} x+4 \sqrt [4]{e} x^2+2 x^3\right ) \log ^2(x)}{144 x+\left (24 \sqrt [4]{e} x+24 x^2\right ) \log (x)+\left (\sqrt {e} x+2 \sqrt [4]{e} x^2+x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (6+\sqrt [4]{e} (-4+x)+56 x+x^2\right )+4 x \left (-4+11 \sqrt [4]{e}+12 x\right ) \log (x)+2 x \left (-1+\sqrt {e}+2 \sqrt [4]{e} x+x^2\right ) \log ^2(x)}{x \left (12+\left (\sqrt [4]{e}+x\right ) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {2 \left (-1+\sqrt {e}+2 \sqrt [4]{e} x+x^2\right )}{\left (\sqrt [4]{e}+x\right )^2}+\frac {4 \left (2 \left (3-2 \sqrt [4]{e}\right ) \sqrt {e}-\left (72-60 \sqrt [4]{e}+12 \sqrt {e}-e^{3/4}\right ) x+3 \left (18-8 \sqrt [4]{e}+\sqrt {e}\right ) x^2-\left (16-3 \sqrt [4]{e}\right ) x^3+x^4\right )}{x \left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}+\frac {4 \left (12-4 \sqrt [4]{e}-\sqrt {e}-\left (4+\sqrt [4]{e}\right ) x\right )}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {-1+\sqrt {e}+2 \sqrt [4]{e} x+x^2}{\left (\sqrt [4]{e}+x\right )^2} \, dx+4 \int \frac {2 \left (3-2 \sqrt [4]{e}\right ) \sqrt {e}-\left (72-60 \sqrt [4]{e}+12 \sqrt {e}-e^{3/4}\right ) x+3 \left (18-8 \sqrt [4]{e}+\sqrt {e}\right ) x^2-\left (16-3 \sqrt [4]{e}\right ) x^3+x^4}{x \left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx+4 \int \frac {12-4 \sqrt [4]{e}-\sqrt {e}-\left (4+\sqrt [4]{e}\right ) x}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )} \, dx\\ &=2 \int \left (1-\frac {1}{\left (\sqrt [4]{e}+x\right )^2}\right ) \, dx+4 \int \left (-\frac {16 \left (1-\frac {\sqrt [4]{e}}{16}\right )}{\left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}-\frac {2 \left (-3+2 \sqrt [4]{e}\right )}{x \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}+\frac {x}{\left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}-\frac {72}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}+\frac {12 \left (4+\sqrt [4]{e}\right )}{\left (\sqrt [4]{e}+x\right ) \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2}\right ) \, dx+4 \int \left (\frac {12}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )}+\frac {-4-\sqrt [4]{e}}{\left (\sqrt [4]{e}+x\right ) \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )}\right ) \, dx\\ &=2 x+\frac {2}{\sqrt [4]{e}+x}+4 \int \frac {x}{\left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx+48 \int \frac {1}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )} \, dx-288 \int \frac {1}{\left (\sqrt [4]{e}+x\right )^2 \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx+\left (8 \left (3-2 \sqrt [4]{e}\right )\right ) \int \frac {1}{x \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx-\left (4 \left (16-\sqrt [4]{e}\right )\right ) \int \frac {1}{\left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx-\left (4 \left (4+\sqrt [4]{e}\right )\right ) \int \frac {1}{\left (\sqrt [4]{e}+x\right ) \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )} \, dx+\left (48 \left (4+\sqrt [4]{e}\right )\right ) \int \frac {1}{\left (\sqrt [4]{e}+x\right ) \left (12+\sqrt [4]{e} \log (x)+x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 36, normalized size = 1.38 \begin {gather*} \frac {2 \left (8+10 x+\left (1+\sqrt [4]{e} x+x^2\right ) \log (x)\right )}{12+\left (\sqrt [4]{e}+x\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left ({\left (x^{2} + x e^{\frac {1}{4}} + 1\right )} \log \relax (x) + 10 \, x + 8\right )}}{{\left (x + e^{\frac {1}{4}}\right )} \log \relax (x) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.83, size = 34, normalized size = 1.31 \begin {gather*} \frac {2 \, {\left (x^{2} \log \relax (x) + x e^{\frac {1}{4}} \log \relax (x) + 10 \, x + \log \relax (x) + 8\right )}}{x \log \relax (x) + e^{\frac {1}{4}} \log \relax (x) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 42, normalized size = 1.62
method | result | size |
norman | \(\frac {\left (-2 \,{\mathrm e}^{\frac {1}{2}}+2\right ) \ln \relax (x )+20 x +2 x^{2} \ln \relax (x )+16-24 \,{\mathrm e}^{\frac {1}{4}}}{\ln \relax (x ) {\mathrm e}^{\frac {1}{4}}+x \ln \relax (x )+12}\) | \(42\) |
risch | \(\frac {2 x \,{\mathrm e}^{\frac {1}{4}}+2 x^{2}+2}{x +{\mathrm e}^{\frac {1}{4}}}-\frac {4 \left (x \,{\mathrm e}^{\frac {1}{4}}+x^{2}-4 \,{\mathrm e}^{\frac {1}{4}}-4 x +6\right )}{\left (x +{\mathrm e}^{\frac {1}{4}}\right ) \left (\ln \relax (x ) {\mathrm e}^{\frac {1}{4}}+x \ln \relax (x )+12\right )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.99, size = 30, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left ({\left (x^{2} + x e^{\frac {1}{4}} + 1\right )} \log \relax (x) + 10 \, x + 8\right )}}{{\left (x + e^{\frac {1}{4}}\right )} \log \relax (x) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.74, size = 34, normalized size = 1.31 \begin {gather*} \frac {2\,\left (10\,x+\ln \relax (x)+x^2\,\ln \relax (x)+x\,{\mathrm {e}}^{1/4}\,\ln \relax (x)+8\right )}{{\mathrm {e}}^{1/4}\,\ln \relax (x)+x\,\ln \relax (x)+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________