Optimal. Leaf size=31 \[ 4+\frac {4 e^{6+2 e^3} x^2}{\left (-\frac {3}{x}+\log \left (\frac {3}{\log (x)}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 e^{6+2 e^3} x^4-48 e^{6+2 e^3} x^3 \log (x)+8 e^{6+2 e^3} x^4 \log (x) \log \left (\frac {3}{\log (x)}\right )}{-27 \log (x)+27 x \log (x) \log \left (\frac {3}{\log (x)}\right )-9 x^2 \log (x) \log ^2\left (\frac {3}{\log (x)}\right )+x^3 \log (x) \log ^3\left (\frac {3}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{6+2 e^3} x^3 \left (-x-\log (x) \left (-6+x \log \left (\frac {3}{\log (x)}\right )\right )\right )}{\log (x) \left (3-x \log \left (\frac {3}{\log (x)}\right )\right )^3} \, dx\\ &=\left (8 e^{6+2 e^3}\right ) \int \frac {x^3 \left (-x-\log (x) \left (-6+x \log \left (\frac {3}{\log (x)}\right )\right )\right )}{\log (x) \left (3-x \log \left (\frac {3}{\log (x)}\right )\right )^3} \, dx\\ &=\left (8 e^{6+2 e^3}\right ) \int \left (\frac {x^3 (x-3 \log (x))}{\log (x) \left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3}+\frac {x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^2}\right ) \, dx\\ &=\left (8 e^{6+2 e^3}\right ) \int \frac {x^3 (x-3 \log (x))}{\log (x) \left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3} \, dx+\left (8 e^{6+2 e^3}\right ) \int \frac {x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^2} \, dx\\ &=\left (8 e^{6+2 e^3}\right ) \int \frac {x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^2} \, dx+\left (8 e^{6+2 e^3}\right ) \int \left (-\frac {3 x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3}+\frac {x^4}{\log (x) \left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3}\right ) \, dx\\ &=\left (8 e^{6+2 e^3}\right ) \int \frac {x^4}{\log (x) \left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3} \, dx+\left (8 e^{6+2 e^3}\right ) \int \frac {x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^2} \, dx-\left (24 e^{6+2 e^3}\right ) \int \frac {x^3}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 27, normalized size = 0.87 \begin {gather*} \frac {4 e^{6+2 e^3} x^4}{\left (-3+x \log \left (\frac {3}{\log (x)}\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 39, normalized size = 1.26 \begin {gather*} \frac {4 \, x^{4} e^{\left (2 \, e^{3} + 6\right )}}{x^{2} \log \left (\frac {3}{\log \relax (x)}\right )^{2} - 6 \, x \log \left (\frac {3}{\log \relax (x)}\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.64, size = 54, normalized size = 1.74 \begin {gather*} \frac {4 \, x^{4} e^{\left (2 \, e^{3} + 6\right )}}{x^{2} \log \relax (3)^{2} - 2 \, x^{2} \log \relax (3) \log \left (\log \relax (x)\right ) + x^{2} \log \left (\log \relax (x)\right )^{2} - 6 \, x \log \relax (3) + 6 \, x \log \left (\log \relax (x)\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.46, size = 31, normalized size = 1.00
method | result | size |
risch | \(-\frac {16 x^{4} {\mathrm e}^{2 \,{\mathrm e}^{3}+6}}{\left (2 i x \ln \relax (3)-2 i x \ln \left (\ln \relax (x )\right )-6 i\right )^{2}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 53, normalized size = 1.71 \begin {gather*} \frac {4 \, x^{4} e^{\left (2 \, e^{3} + 6\right )}}{x^{2} \log \relax (3)^{2} + x^{2} \log \left (\log \relax (x)\right )^{2} - 6 \, x \log \relax (3) - 2 \, {\left (x^{2} \log \relax (3) - 3 \, x\right )} \log \left (\log \relax (x)\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 74, normalized size = 2.39 \begin {gather*} \frac {4\,\left (3\,x^4\,{\mathrm {e}}^{2\,{\mathrm {e}}^3+6}\,{\ln \relax (x)}^2-x^5\,{\mathrm {e}}^{2\,{\mathrm {e}}^3+6}\,\ln \relax (x)\right )}{\left (3\,{\ln \relax (x)}^2-x\,\ln \relax (x)\right )\,\left (x^2\,{\ln \left (\frac {3}{\ln \relax (x)}\right )}^2-6\,x\,\ln \left (\frac {3}{\ln \relax (x)}\right )+9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 37, normalized size = 1.19 \begin {gather*} \frac {4 x^{4} e^{6} e^{2 e^{3}}}{x^{2} \log {\left (\frac {3}{\log {\relax (x )}} \right )}^{2} - 6 x \log {\left (\frac {3}{\log {\relax (x )}} \right )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________