Optimal. Leaf size=26 \[ \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 6.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\frac {x+4 \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}{\log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (-x \log \left (x^2\right )+\left (-x+x^2\right ) \log \left (x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+\left (\left (2 x-2 x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+(8-8 x) \log ^2\left (\frac {(-4+4 x) \log (4)}{5 x}\right )\right ) \log \left (\frac {x+4 \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}{\log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}\right )\right )}{\left (-x^2+x^3\right ) \log ^2\left (x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+\left (-4 x+4 x^2\right ) \log ^2\left (x^2\right ) \log ^2\left (\frac {(-4+4 x) \log (4)}{5 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (\frac {\log \left (x^2\right ) \left (-1+(-1+x) \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}{(-1+x) \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}-\frac {2 \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x}\right )}{\log ^2\left (x^2\right )} \, dx\\ &=\int \left (\frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (1+\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )-x \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )}-\frac {2 \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (1+\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )-x \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )} \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (1-(-1+x) \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )} \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )+\int \left (-\frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}+\frac {x \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}+\frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )-\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )} \, dx+\int \frac {x \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )} \, dx+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )} \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )-\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )} \, dx+\int \left (\frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{\log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}+\frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(-1+x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )}\right ) \, dx+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )} \, dx\\ &=-\left (2 \int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \log \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )}{x \log ^2\left (x^2\right )} \, dx\right )+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{\log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right )} \, dx+\int \frac {\left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}}}{(1-x) \log \left (x^2\right ) \left (x+4 \log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )\right ) \log \left (\frac {4 \log (4)}{5}-\frac {4 \log (4)}{5 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 1.00 \begin {gather*} \left (4+\frac {x}{\log \left (\frac {4 (-1+x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 36, normalized size = 1.38 \begin {gather*} \left (\frac {x + 4 \, \log \left (\frac {8 \, {\left (x - 1\right )} \log \relax (2)}{5 \, x}\right )}{\log \left (\frac {8 \, {\left (x - 1\right )} \log \relax (2)}{5 \, x}\right )}\right )^{\left (\frac {1}{\log \left (x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 3.80, size = 1648, normalized size = 63.38
method | result | size |
risch | \(\text {Expression too large to display}\) | \(1648\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.09, size = 61, normalized size = 2.35 \begin {gather*} e^{\left (\frac {\log \left (x - 4 \, \log \relax (5) + 12 \, \log \relax (2) + 4 \, \log \left (x - 1\right ) - 4 \, \log \relax (x) + 4 \, \log \left (\log \relax (2)\right )\right )}{2 \, \log \relax (x)} - \frac {\log \left (-\log \relax (5) + 3 \, \log \relax (2) + \log \left (x - 1\right ) - \log \relax (x) + \log \left (\log \relax (2)\right )\right )}{2 \, \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 29, normalized size = 1.12 \begin {gather*} {\left (\frac {x}{\ln \left (-\frac {8\,\ln \relax (2)-8\,x\,\ln \relax (2)}{5\,x}\right )}+4\right )}^{\frac {1}{\ln \left (x^2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 47.67, size = 41, normalized size = 1.58 \begin {gather*} e^{\frac {\log {\left (\frac {x + 4 \log {\left (\frac {\left (\frac {8 x}{5} - \frac {8}{5}\right ) \log {\relax (2 )}}{x} \right )}}{\log {\left (\frac {\left (\frac {8 x}{5} - \frac {8}{5}\right ) \log {\relax (2 )}}{x} \right )}} \right )}}{\log {\left (x^{2} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________