Optimal. Leaf size=25 \[ 1+\log \left (-e^4+e^{\frac {x}{\log \left (e^x-5 x^2\right )}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.63, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 2, number of rules used = 2, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6741, 6684} \begin {gather*} \log \left (e^4-e^{\frac {x}{\log \left (e^x-5 x^2\right )}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x}{\log \left (e^x-5 x^2\right )}} \left (e^x x-10 x^2-\left (e^x-5 x^2\right ) \log \left (e^x-5 x^2\right )\right )}{\left (e^4-e^{\frac {x}{\log \left (e^x-5 x^2\right )}}\right ) \left (e^x-5 x^2\right ) \log ^2\left (e^x-5 x^2\right )} \, dx\\ &=\log \left (e^4-e^{\frac {x}{\log \left (e^x-5 x^2\right )}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 0.92 \begin {gather*} \log \left (-e^4+e^{\frac {x}{\log \left (e^x-5 x^2\right )}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 1.20 \begin {gather*} \log \left (-e^{4} + e^{\left (\frac {x}{\log \left (-{\left (5 \, x^{2} e^{4} - e^{\left (x + 4\right )}\right )} e^{\left (-4\right )}\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 8.86, size = 231, normalized size = 9.24 \begin {gather*} \frac {1}{2} \, \log \left (-2 \, {\left | 5 \, x^{2} - e^{x} \right |}^{\frac {2 \, x}{\pi ^{2} \mathrm {sgn}\left (5 \, x^{2} - e^{x}\right ) + \pi ^{2} + 2 \, \log \left ({\left | 5 \, x^{2} - e^{x} \right |}\right )^{2}}} \cos \left (-\frac {2 \, \pi x \mathrm {sgn}\left (-5 \, x^{2} + e^{x}\right )}{\pi ^{2} \mathrm {sgn}\left (-5 \, x^{2} + e^{x}\right )^{2} - 2 \, \pi ^{2} \mathrm {sgn}\left (-5 \, x^{2} + e^{x}\right ) + \pi ^{2} + 4 \, \log \left ({\left | -5 \, x^{2} + e^{x} \right |}\right )^{2}} + \frac {2 \, \pi x}{\pi ^{2} \mathrm {sgn}\left (-5 \, x^{2} + e^{x}\right )^{2} - 2 \, \pi ^{2} \mathrm {sgn}\left (-5 \, x^{2} + e^{x}\right ) + \pi ^{2} + 4 \, \log \left ({\left | -5 \, x^{2} + e^{x} \right |}\right )^{2}}\right ) e^{4} + {\left | 5 \, x^{2} - e^{x} \right |}^{\frac {4 \, x}{\pi ^{2} \mathrm {sgn}\left (5 \, x^{2} - e^{x}\right ) + \pi ^{2} + 2 \, \log \left ({\left | 5 \, x^{2} - e^{x} \right |}\right )^{2}}} + e^{8}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.84
method | result | size |
risch | \(\ln \left (-{\mathrm e}^{4}+{\mathrm e}^{\frac {x}{\ln \left ({\mathrm e}^{x}-5 x^{2}\right )}}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 20, normalized size = 0.80 \begin {gather*} \log \left (-e^{4} + e^{\left (\frac {x}{\log \left (-5 \, x^{2} + e^{x}\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.01, size = 20, normalized size = 0.80 \begin {gather*} \ln \left ({\mathrm {e}}^{\frac {x}{\ln \left ({\mathrm {e}}^x-5\,x^2\right )}}-{\mathrm {e}}^4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________