3.1.95 ex+(5+x3)log(ee6xx)log(ee6xx)(1+6e6xxlog(ee6xx)+3x2log2(ee6xx))log2(ee6xx)dx

Optimal. Leaf size=22 e5+x3xlog(ee6xx)

________________________________________________________________________________________

Rubi [A]  time = 1.36, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 87, number of rulesintegrand size = 0.023, Rules used = {6688, 6706} ex3xlog(ee6xx)+5

Antiderivative was successfully verified.

[In]

Int[(E^((-x + (5 + x^3)*Log[E^E^(6*x)*x])/Log[E^E^(6*x)*x])*(1 + 6*E^(6*x)*x - Log[E^E^(6*x)*x] + 3*x^2*Log[E^
E^(6*x)*x]^2))/Log[E^E^(6*x)*x]^2,x]

[Out]

E^(5 + x^3 - x/Log[E^E^(6*x)*x])

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=e5+x3xlog(ee6xx)(1+6e6xxlog(ee6xx)+3x2log2(ee6xx))log2(ee6xx)dx=e5+x3xlog(ee6xx)

________________________________________________________________________________________

Mathematica [A]  time = 1.01, size = 22, normalized size = 1.00 e5+x3xlog(ee6xx)

Antiderivative was successfully verified.

[In]

Integrate[(E^((-x + (5 + x^3)*Log[E^E^(6*x)*x])/Log[E^E^(6*x)*x])*(1 + 6*E^(6*x)*x - Log[E^E^(6*x)*x] + 3*x^2*
Log[E^E^(6*x)*x]^2))/Log[E^E^(6*x)*x]^2,x]

[Out]

E^(5 + x^3 - x/Log[E^E^(6*x)*x])

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 30, normalized size = 1.36 e((x3+5)log(xe(e(6x)))xlog(xe(e(6x))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="fricas")

[Out]

e^(((x^3 + 5)*log(x*e^(e^(6*x))) - x)/log(x*e^(e^(6*x))))

________________________________________________________________________________________

giac [A]  time = 0.55, size = 19, normalized size = 0.86 e(x3xlog(xe(e(6x)))+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="giac")

[Out]

e^(x^3 - x/log(x*e^(e^(6*x))) + 5)

________________________________________________________________________________________

maple [C]  time = 1.57, size = 334, normalized size = 15.18




method result size



risch eiπcsgn(ixee6x)3x3+iπcsgn(ixee6x)2csgn(ix)x3+iπcsgn(ixee6x)2csgn(iee6x)x3iπcsgn(ixee6x)csgn(ix)csgn(iee6x)x35iπcsgn(ixee6x)3+5iπcsgn(ixee6x)2csgn(ix)+5iπcsgn(ixee6x)2csgn(iee6x)5iπcsgn(ixee6x)csgn(ix)csgn(iee6x)+2x3ln(x)+2ln(ee6x)x3+10ln(x)+10ln(ee6x)2xiπcsgn(ixee6x)3+iπcsgn(ixee6x)2csgn(ix)+iπcsgn(ixee6x)2csgn(iee6x)iπcsgn(ixee6x)csgn(ix)csgn(iee6x)+2ln(x)+2ln(ee6x) 334



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2*ln(x*exp(exp(3*x)^2))^2-ln(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*ln(x*exp(exp(3*x)^2))-
x)/ln(x*exp(exp(3*x)^2)))/ln(x*exp(exp(3*x)^2))^2,x,method=_RETURNVERBOSE)

[Out]

exp((-I*Pi*csgn(I*x*exp(exp(6*x)))^3*x^3+I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)*x^3+I*Pi*csgn(I*x*exp(exp(6*
x)))^2*csgn(I*exp(exp(6*x)))*x^3-I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))*x^3-5*I*Pi*csgn(
I*x*exp(exp(6*x)))^3+5*I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)+5*I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*exp(ex
p(6*x)))-5*I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))+2*x^3*ln(x)+2*ln(exp(exp(6*x)))*x^3+10
*ln(x)+10*ln(exp(exp(6*x)))-2*x)/(-I*Pi*csgn(I*x*exp(exp(6*x)))^3+I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)+I*P
i*csgn(I*x*exp(exp(6*x)))^2*csgn(I*exp(exp(6*x)))-I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))
+2*ln(x)+2*ln(exp(exp(6*x)))))

________________________________________________________________________________________

maxima [A]  time = 0.85, size = 18, normalized size = 0.82 e(x3xe(6x)+log(x)+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="maxima")

[Out]

e^(x^3 - x/(e^(6*x) + log(x)) + 5)

________________________________________________________________________________________

mupad [B]  time = 0.38, size = 65, normalized size = 2.95 xx3+5e6x+ln(x)exe6x+ln(x)ex3e6xe6x+ln(x)e5e6xe6x+ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(x - log(x*exp(exp(6*x)))*(x^3 + 5))/log(x*exp(exp(6*x))))*(6*x*exp(6*x) - log(x*exp(exp(6*x))) + 3*
x^2*log(x*exp(exp(6*x)))^2 + 1))/log(x*exp(exp(6*x)))^2,x)

[Out]

x^((x^3 + 5)/(exp(6*x) + log(x)))*exp(-x/(exp(6*x) + log(x)))*exp((x^3*exp(6*x))/(exp(6*x) + log(x)))*exp((5*e
xp(6*x))/(exp(6*x) + log(x)))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2*ln(x*exp(exp(3*x)**2))**2-ln(x*exp(exp(3*x)**2))+6*x*exp(3*x)**2+1)*exp(((x**3+5)*ln(x*exp(e
xp(3*x)**2))-x)/ln(x*exp(exp(3*x)**2)))/ln(x*exp(exp(3*x)**2))**2,x)

[Out]

Timed out

________________________________________________________________________________________