3.1.95
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [A] time = 1.36, antiderivative size = 22, normalized size of antiderivative = 1.00,
number of steps used = 2, number of rules used = 2, integrand size = 87, = 0.023, Rules used =
{6688, 6706}
Antiderivative was successfully verified.
[In]
Int[(E^((-x + (5 + x^3)*Log[E^E^(6*x)*x])/Log[E^E^(6*x)*x])*(1 + 6*E^(6*x)*x - Log[E^E^(6*x)*x] + 3*x^2*Log[E^
E^(6*x)*x]^2))/Log[E^E^(6*x)*x]^2,x]
[Out]
E^(5 + x^3 - x/Log[E^E^(6*x)*x])
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.01, size = 22, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^((-x + (5 + x^3)*Log[E^E^(6*x)*x])/Log[E^E^(6*x)*x])*(1 + 6*E^(6*x)*x - Log[E^E^(6*x)*x] + 3*x^2*
Log[E^E^(6*x)*x]^2))/Log[E^E^(6*x)*x]^2,x]
[Out]
E^(5 + x^3 - x/Log[E^E^(6*x)*x])
________________________________________________________________________________________
fricas [A] time = 0.65, size = 30, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="fricas")
[Out]
e^(((x^3 + 5)*log(x*e^(e^(6*x))) - x)/log(x*e^(e^(6*x))))
________________________________________________________________________________________
giac [A] time = 0.55, size = 19, normalized size = 0.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="giac")
[Out]
e^(x^3 - x/log(x*e^(e^(6*x))) + 5)
________________________________________________________________________________________
maple [C] time = 1.57, size = 334, normalized size = 15.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((3*x^2*ln(x*exp(exp(3*x)^2))^2-ln(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*ln(x*exp(exp(3*x)^2))-
x)/ln(x*exp(exp(3*x)^2)))/ln(x*exp(exp(3*x)^2))^2,x,method=_RETURNVERBOSE)
[Out]
exp((-I*Pi*csgn(I*x*exp(exp(6*x)))^3*x^3+I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)*x^3+I*Pi*csgn(I*x*exp(exp(6*
x)))^2*csgn(I*exp(exp(6*x)))*x^3-I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))*x^3-5*I*Pi*csgn(
I*x*exp(exp(6*x)))^3+5*I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)+5*I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*exp(ex
p(6*x)))-5*I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))+2*x^3*ln(x)+2*ln(exp(exp(6*x)))*x^3+10
*ln(x)+10*ln(exp(exp(6*x)))-2*x)/(-I*Pi*csgn(I*x*exp(exp(6*x)))^3+I*Pi*csgn(I*x*exp(exp(6*x)))^2*csgn(I*x)+I*P
i*csgn(I*x*exp(exp(6*x)))^2*csgn(I*exp(exp(6*x)))-I*Pi*csgn(I*x*exp(exp(6*x)))*csgn(I*x)*csgn(I*exp(exp(6*x)))
+2*ln(x)+2*ln(exp(exp(6*x)))))
________________________________________________________________________________________
maxima [A] time = 0.85, size = 18, normalized size = 0.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x^2*log(x*exp(exp(3*x)^2))^2-log(x*exp(exp(3*x)^2))+6*x*exp(3*x)^2+1)*exp(((x^3+5)*log(x*exp(exp(
3*x)^2))-x)/log(x*exp(exp(3*x)^2)))/log(x*exp(exp(3*x)^2))^2,x, algorithm="maxima")
[Out]
e^(x^3 - x/(e^(6*x) + log(x)) + 5)
________________________________________________________________________________________
mupad [B] time = 0.38, size = 65, normalized size = 2.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-(x - log(x*exp(exp(6*x)))*(x^3 + 5))/log(x*exp(exp(6*x))))*(6*x*exp(6*x) - log(x*exp(exp(6*x))) + 3*
x^2*log(x*exp(exp(6*x)))^2 + 1))/log(x*exp(exp(6*x)))^2,x)
[Out]
x^((x^3 + 5)/(exp(6*x) + log(x)))*exp(-x/(exp(6*x) + log(x)))*exp((x^3*exp(6*x))/(exp(6*x) + log(x)))*exp((5*e
xp(6*x))/(exp(6*x) + log(x)))
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*x**2*ln(x*exp(exp(3*x)**2))**2-ln(x*exp(exp(3*x)**2))+6*x*exp(3*x)**2+1)*exp(((x**3+5)*ln(x*exp(e
xp(3*x)**2))-x)/ln(x*exp(exp(3*x)**2)))/ln(x*exp(exp(3*x)**2))**2,x)
[Out]
Timed out
________________________________________________________________________________________