Optimal. Leaf size=19 \[ \frac {e^{2-x}}{46+x+\log \left (3+e^x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2-x} \left (-141+e^x (-48-x)-3 x+\left (-3-e^x\right ) \log \left (3+e^x\right )\right )}{\left (46+x+\log \left (3+e^x\right )\right ) \left (138+3 x+e^x (46+x)+\left (3+e^x\right ) \log \left (3+e^x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2-x} \left (-3 (47+x)-e^x (48+x)-\left (3+e^x\right ) \log \left (3+e^x\right )\right )}{\left (3+e^x\right ) \left (46+x+\log \left (3+e^x\right )\right )^2} \, dx\\ &=\int \left (\frac {3 e^{2-x}}{\left (3+e^x\right ) \left (46+x+\log \left (3+e^x\right )\right )^2}+\frac {e^{2-x} \left (-48-x-\log \left (3+e^x\right )\right )}{\left (46+x+\log \left (3+e^x\right )\right )^2}\right ) \, dx\\ &=3 \int \frac {e^{2-x}}{\left (3+e^x\right ) \left (46+x+\log \left (3+e^x\right )\right )^2} \, dx+\int \frac {e^{2-x} \left (-48-x-\log \left (3+e^x\right )\right )}{\left (46+x+\log \left (3+e^x\right )\right )^2} \, dx\\ &=3 \int \frac {e^{2-x}}{\left (3+e^x\right ) \left (46+x+\log \left (3+e^x\right )\right )^2} \, dx+\int \left (\frac {e^{2-x}}{-46-x-\log \left (3+e^x\right )}-\frac {2 e^{2-x}}{\left (46+x+\log \left (3+e^x\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2-x}}{\left (46+x+\log \left (3+e^x\right )\right )^2} \, dx\right )+3 \int \frac {e^{2-x}}{\left (3+e^x\right ) \left (46+x+\log \left (3+e^x\right )\right )^2} \, dx+\int \frac {e^{2-x}}{-46-x-\log \left (3+e^x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 19, normalized size = 1.00 \begin {gather*} \frac {e^{2-x}}{46+x+\log \left (3+e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 20, normalized size = 1.05 \begin {gather*} \frac {e^{2}}{{\left (x + 46\right )} e^{x} + e^{x} \log \left (e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 22, normalized size = 1.16 \begin {gather*} \frac {e^{2}}{x e^{x} + e^{x} \log \left (e^{x} + 3\right ) + 46 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.95
method | result | size |
risch | \(\frac {{\mathrm e}^{2-x}}{\ln \left (3+{\mathrm e}^{x}\right )+x +46}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 20, normalized size = 1.05 \begin {gather*} \frac {e^{2}}{{\left (x + 46\right )} e^{x} + e^{x} \log \left (e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 17, normalized size = 0.89 \begin {gather*} \frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^2}{x+\ln \left ({\mathrm {e}}^x+3\right )+46} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 1.16 \begin {gather*} \frac {e^{2}}{x e^{x} + e^{x} \log {\left (e^{x} + 3 \right )} + 46 e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________