Optimal. Leaf size=23 \[ \log \left (\frac {x^2 \left (e^x+x-x^2\right )}{500 (-3+x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9 x+14 x^2-3 x^3+e^x \left (-6-2 x+x^2\right )}{-3 x^2+4 x^3-x^4+e^x \left (-3 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 x-14 x^2+3 x^3-e^x \left (-6-2 x+x^2\right )}{(3-x) x \left (e^x+x-x^2\right )} \, dx\\ &=\int \left (\frac {1-3 x+x^2}{e^x+x-x^2}+\frac {-6-2 x+x^2}{(-3+x) x}\right ) \, dx\\ &=\int \frac {1-3 x+x^2}{e^x+x-x^2} \, dx+\int \frac {-6-2 x+x^2}{(-3+x) x} \, dx\\ &=\int \left (1+\frac {1}{3-x}+\frac {2}{x}\right ) \, dx+\int \left (\frac {1}{e^x+x-x^2}+\frac {3 x}{-e^x-x+x^2}-\frac {x^2}{-e^x-x+x^2}\right ) \, dx\\ &=x-\log (3-x)+2 \log (x)+3 \int \frac {x}{-e^x-x+x^2} \, dx+\int \frac {1}{e^x+x-x^2} \, dx-\int \frac {x^2}{-e^x-x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 24, normalized size = 1.04 \begin {gather*} -\log (3-x)+2 \log (x)+\log \left (e^x+x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 21, normalized size = 0.91 \begin {gather*} \log \left (-x^{2} + x + e^{x}\right ) - \log \left (x - 3\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 21, normalized size = 0.91 \begin {gather*} \log \left (-x^{2} + x + e^{x}\right ) - \log \left (x - 3\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.96
method | result | size |
risch | \(-\ln \left (x -3\right )+2 \ln \relax (x )+\ln \left (x +{\mathrm e}^{x}-x^{2}\right )\) | \(22\) |
norman | \(2 \ln \relax (x )-\ln \left (x -3\right )+\ln \left (x^{2}-x -{\mathrm e}^{x}\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 21, normalized size = 0.91 \begin {gather*} \log \left (-x^{2} + x + e^{x}\right ) - \log \left (x - 3\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 23, normalized size = 1.00 \begin {gather*} \ln \left (x^2-{\mathrm {e}}^x-x\right )-\ln \left (x-3\right )+2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.83 \begin {gather*} 2 \log {\relax (x )} - \log {\left (x - 3 \right )} + \log {\left (- x^{2} + x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________