Optimal. Leaf size=30 \[ e^{e^{e^{-x^2} x}} x+\left (4-\frac {5}{x}+x\right )^{5 x/3} \]
________________________________________________________________________________________
Rubi [F] time = 2.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x^2} \left (e^{e^{e^{-x^2} x}} \left (e^{x^2} \left (-15+12 x+3 x^2\right )+e^{e^{-x^2} x} \left (-15 x+12 x^2+33 x^3-24 x^4-6 x^5\right )\right )+\left (\frac {-5+4 x+x^2}{x}\right )^{5 x/3} \left (e^{x^2} \left (25+5 x^2\right )+e^{x^2} \left (-25+20 x+5 x^2\right ) \log \left (\frac {-5+4 x+x^2}{x}\right )\right )\right )}{-15+12 x+3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{e^{e^{-x^2} x}-x^2} \left (e^{x^2}+e^{e^{-x^2} x} \left (x-2 x^3\right )\right )+\frac {5 \left (4-\frac {5}{x}+x\right )^{5 x/3} \left (5+x^2+\left (-5+4 x+x^2\right ) \log \left (4-\frac {5}{x}+x\right )\right )}{3 \left (-5+4 x+x^2\right )}\right ) \, dx\\ &=\frac {5}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3} \left (5+x^2+\left (-5+4 x+x^2\right ) \log \left (4-\frac {5}{x}+x\right )\right )}{-5+4 x+x^2} \, dx+\int e^{e^{e^{-x^2} x}-x^2} \left (e^{x^2}+e^{e^{-x^2} x} \left (x-2 x^3\right )\right ) \, dx\\ &=\frac {5}{3} \int \left (\frac {\left (4-\frac {5}{x}+x\right )^{5 x/3} \left (5+x^2\right )}{(-1+x) (5+x)}+\left (4-\frac {5}{x}+x\right )^{5 x/3} \log \left (4-\frac {5}{x}+x\right )\right ) \, dx+\int \left (e^{e^{e^{-x^2} x}}-e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x \left (-1+2 x^2\right )\right ) \, dx\\ &=\frac {5}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3} \left (5+x^2\right )}{(-1+x) (5+x)} \, dx+\frac {5}{3} \int \left (4-\frac {5}{x}+x\right )^{5 x/3} \log \left (4-\frac {5}{x}+x\right ) \, dx+\int e^{e^{e^{-x^2} x}} \, dx-\int e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x \left (-1+2 x^2\right ) \, dx\\ &=\left (4-\frac {5}{x}+x\right )^{5 x/3}-\frac {5}{3} \int \left (1+\frac {5}{x^2}\right ) x \left (4-\frac {5}{x}+x\right )^{-1+\frac {5 x}{3}} \, dx+\frac {5}{3} \int \left (\left (4-\frac {5}{x}+x\right )^{5 x/3}+\frac {\left (4-\frac {5}{x}+x\right )^{5 x/3}}{-1+x}-\frac {5 \left (4-\frac {5}{x}+x\right )^{5 x/3}}{5+x}\right ) \, dx+\int e^{e^{e^{-x^2} x}} \, dx-\int \left (-e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x+2 e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x^3\right ) \, dx\\ &=\left (4-\frac {5}{x}+x\right )^{5 x/3}+\frac {5}{3} \int \left (4-\frac {5}{x}+x\right )^{5 x/3} \, dx+\frac {5}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3}}{-1+x} \, dx-\frac {5}{3} \int \left (\frac {5 \left (4-\frac {5}{x}+x\right )^{-1+\frac {5 x}{3}}}{x}+x \left (4-\frac {5}{x}+x\right )^{-1+\frac {5 x}{3}}\right ) \, dx-2 \int e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x^3 \, dx-\frac {25}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3}}{5+x} \, dx+\int e^{e^{e^{-x^2} x}} \, dx+\int e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x \, dx\\ &=\left (4-\frac {5}{x}+x\right )^{5 x/3}+\frac {5}{3} \int \left (4-\frac {5}{x}+x\right )^{5 x/3} \, dx+\frac {5}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3}}{-1+x} \, dx-\frac {5}{3} \int x \left (4-\frac {5}{x}+x\right )^{-1+\frac {5 x}{3}} \, dx-2 \int e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x^3 \, dx-\frac {25}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{5 x/3}}{5+x} \, dx-\frac {25}{3} \int \frac {\left (4-\frac {5}{x}+x\right )^{-1+\frac {5 x}{3}}}{x} \, dx+\int e^{e^{e^{-x^2} x}} \, dx+\int e^{e^{e^{-x^2} x}+e^{-x^2} x-x^2} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 30, normalized size = 1.00 \begin {gather*} e^{e^{e^{-x^2} x}} x+\left (4-\frac {5}{x}+x\right )^{5 x/3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 29, normalized size = 0.97 \begin {gather*} x e^{\left (e^{\left (x e^{\left (-x^{2}\right )}\right )}\right )} + \left (\frac {x^{2} + 4 \, x - 5}{x}\right )^{\frac {5}{3} \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (5 \, {\left ({\left (x^{2} + 4 \, x - 5\right )} e^{\left (x^{2}\right )} \log \left (\frac {x^{2} + 4 \, x - 5}{x}\right ) + {\left (x^{2} + 5\right )} e^{\left (x^{2}\right )}\right )} \left (\frac {x^{2} + 4 \, x - 5}{x}\right )^{\frac {5}{3} \, x} + 3 \, {\left ({\left (x^{2} + 4 \, x - 5\right )} e^{\left (x^{2}\right )} - {\left (2 \, x^{5} + 8 \, x^{4} - 11 \, x^{3} - 4 \, x^{2} + 5 \, x\right )} e^{\left (x e^{\left (-x^{2}\right )}\right )}\right )} e^{\left (e^{\left (x e^{\left (-x^{2}\right )}\right )}\right )}\right )} e^{\left (-x^{2}\right )}}{3 \, {\left (x^{2} + 4 \, x - 5\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.28, size = 154, normalized size = 5.13
method | result | size |
risch | \(x \,{\mathrm e}^{{\mathrm e}^{x \,{\mathrm e}^{-x^{2}}}}+{\mathrm e}^{-\frac {5 x \left (i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x -5\right )}{x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x -5\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x -5\right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+4 x -5\right )\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}+4 x -5\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x^{2}+4 x -5\right )\right )+2 \ln \relax (x )-2 \ln \left (x^{2}+4 x -5\right )\right )}{6}}\) | \(154\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 43, normalized size = 1.43 \begin {gather*} \frac {x e^{\left (\frac {5}{3} \, x \log \relax (x) + e^{\left (x e^{\left (-x^{2}\right )}\right )}\right )} + e^{\left (\frac {5}{3} \, x \log \left (x + 5\right ) + \frac {5}{3} \, x \log \left (x - 1\right )\right )}}{x^{\frac {5}{3} \, x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.68, size = 25, normalized size = 0.83 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^{-x^2}}}+{\left (x-\frac {5}{x}+4\right )}^{\frac {5\,x}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________