Optimal. Leaf size=22 \[ x+\frac {e \left (-x+9 e^{6561-2 x} x\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 24, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6742, 2288, 2297, 2298} \begin {gather*} x+\frac {9 e^{6562-2 x} x}{\log (x)}-\frac {e x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 2297
Rule 2298
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9 e^{6562-2 x} (1-\log (x)+2 x \log (x))}{\log ^2(x)}+\frac {e-e \log (x)+\log ^2(x)}{\log ^2(x)}\right ) \, dx\\ &=-\left (9 \int \frac {e^{6562-2 x} (1-\log (x)+2 x \log (x))}{\log ^2(x)} \, dx\right )+\int \frac {e-e \log (x)+\log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {9 e^{6562-2 x} x}{\log (x)}+\int \left (1+\frac {e}{\log ^2(x)}-\frac {e}{\log (x)}\right ) \, dx\\ &=x+\frac {9 e^{6562-2 x} x}{\log (x)}+e \int \frac {1}{\log ^2(x)} \, dx-e \int \frac {1}{\log (x)} \, dx\\ &=x-\frac {e x}{\log (x)}+\frac {9 e^{6562-2 x} x}{\log (x)}-e \text {li}(x)+e \int \frac {1}{\log (x)} \, dx\\ &=x-\frac {e x}{\log (x)}+\frac {9 e^{6562-2 x} x}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.65, size = 21, normalized size = 0.95 \begin {gather*} \frac {x \left (-e+9 e^{6562-2 x}+\log (x)\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.34, size = 25, normalized size = 1.14 \begin {gather*} -\frac {x e - 9 \, x e^{\left (-2 \, x + 6562\right )} - x \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 25, normalized size = 1.14 \begin {gather*} -\frac {x e - 9 \, x e^{\left (-2 \, x + 6562\right )} - x \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.95
method | result | size |
risch | \(x +\frac {x \,{\mathrm e} \left (9 \,{\mathrm e}^{-2 x +6561}-1\right )}{\ln \relax (x )}\) | \(21\) |
default | \(x +\frac {9 \,{\mathrm e} x \,{\mathrm e}^{-2 x +6561}}{\ln \relax (x )}-\frac {x \,{\mathrm e}}{\ln \relax (x )}\) | \(27\) |
norman | \(\frac {x \ln \relax (x )-x \,{\mathrm e}+9 x \,{\mathrm e} \,{\mathrm e}^{-2 x +6561}}{\ln \relax (x )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e \Gamma \left (-1, -\log \relax (x)\right ) - e \int \frac {1}{\log \relax (x)}\,{d x} + x + \frac {9 \, x e^{\left (-2 \, x + 6562\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 20, normalized size = 0.91 \begin {gather*} x-\frac {x\,\left (\mathrm {e}-9\,{\mathrm {e}}^{6562-2\,x}\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 26, normalized size = 1.18 \begin {gather*} \frac {9 e x e^{6561 - 2 x}}{\log {\relax (x )}} + x - \frac {e x}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________