Optimal. Leaf size=24 \[ 5+e^{2 x} \left (4+e^{e^x}\right ) \left (x+\frac {4}{\log (\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-\frac {16 e^{2 x}}{x}-\frac {4 e^{e^x+2 x}}{x}+\left (32 e^{2 x} \log (x)+\frac {e^{e^x+2 x} \left (8 x^2+4 e^x x^2\right ) \log (x)}{x^2}\right ) \log (\log (x))+\left (\frac {e^{2 x} \left (4 x^2+8 x^3\right ) \log (x)}{x^2}+\frac {e^{e^x+2 x} \left (x^2+2 x^3+e^x x^3\right ) \log (x)}{x^2}\right ) \log ^2(\log (x))}{\log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-4 \left (4+e^{e^x}\right )+x \log (x) \log (\log (x)) \left (4 \left (8+2 e^{e^x}+e^{e^x+x}\right )+\left (4+8 x+e^{e^x+x} x+e^{e^x} (1+2 x)\right ) \log (\log (x))\right )\right )}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\int \left (\frac {e^{e^x+3 x} (4+x \log (\log (x)))}{\log (\log (x))}+\frac {e^{2 x} \left (4+e^{e^x}\right ) \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}\right ) \, dx\\ &=\int \frac {e^{e^x+3 x} (4+x \log (\log (x)))}{\log (\log (x))} \, dx+\int \frac {e^{2 x} \left (4+e^{e^x}\right ) \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\int \left (e^{e^x+3 x} x+\frac {4 e^{e^x+3 x}}{\log (\log (x))}\right ) \, dx+\int \frac {e^{2 x} \left (4+e^{e^x}\right ) (-4+x \log (x) \log (\log (x)) (8+(1+2 x) \log (\log (x))))}{x \log (x) \log ^2(\log (x))} \, dx\\ &=4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx+\int \left (\frac {4 e^{2 x} \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+\frac {e^{e^x+2 x} \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}\right ) \, dx\\ &=4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+4 \int \frac {e^{2 x} \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))} \, dx+\int e^{e^x+3 x} x \, dx+\int \frac {e^{e^x+2 x} \left (-4+8 x \log (x) \log (\log (x))+x \log (x) \log ^2(\log (x))+2 x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx+\int \frac {e^{e^x+2 x} (-4+x \log (x) \log (\log (x)) (8+(1+2 x) \log (\log (x))))}{x \log (x) \log ^2(\log (x))} \, dx\\ &=\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx+\int \left (e^{e^x+2 x}+2 e^{e^x+2 x} x-\frac {4 e^{e^x+2 x}}{x \log (x) \log ^2(\log (x))}+\frac {8 e^{e^x+2 x}}{\log (\log (x))}\right ) \, dx\\ &=\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+2 \int e^{e^x+2 x} x \, dx-4 \int \frac {e^{e^x+2 x}}{x \log (x) \log ^2(\log (x))} \, dx+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+8 \int \frac {e^{e^x+2 x}}{\log (\log (x))} \, dx+\int e^{e^x+2 x} \, dx+\int e^{e^x+3 x} x \, dx\\ &=\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+2 \int e^{e^x+2 x} x \, dx-4 \int \frac {e^{e^x+2 x}}{x \log (x) \log ^2(\log (x))} \, dx+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+8 \int \frac {e^{e^x+2 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx+\operatorname {Subst}\left (\int e^x x \, dx,x,e^x\right )\\ &=e^{e^x+x}+\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+2 \int e^{e^x+2 x} x \, dx-4 \int \frac {e^{e^x+2 x}}{x \log (x) \log ^2(\log (x))} \, dx+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+8 \int \frac {e^{e^x+2 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx-\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=-e^{e^x}+e^{e^x+x}+\frac {4 e^{2 x} \left (4 x \log (x) \log (\log (x))+x^2 \log (x) \log ^2(\log (x))\right )}{x \log (x) \log ^2(\log (x))}+2 \int e^{e^x+2 x} x \, dx-4 \int \frac {e^{e^x+2 x}}{x \log (x) \log ^2(\log (x))} \, dx+4 \int \frac {e^{e^x+3 x}}{\log (\log (x))} \, dx+8 \int \frac {e^{e^x+2 x}}{\log (\log (x))} \, dx+\int e^{e^x+3 x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 25, normalized size = 1.04 \begin {gather*} \frac {e^{2 x} \left (4+e^{e^x}\right ) (4+x \log (\log (x)))}{\log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 56, normalized size = 2.33 \begin {gather*} \frac {4 \, x^{2} e^{\left (2 \, x + e^{x} - 2 \, \log \relax (x)\right )} + {\left (x^{3} e^{\left (2 \, x + e^{x} - 2 \, \log \relax (x)\right )} + 4 \, x e^{\left (2 \, x\right )}\right )} \log \left (\log \relax (x)\right ) + 16 \, e^{\left (2 \, x\right )}}{\log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 44, normalized size = 1.83 \begin {gather*} \frac {4 \, x e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right ) + x e^{\left (2 \, x + e^{x}\right )} \log \left (\log \relax (x)\right ) + 16 \, e^{\left (2 \, x\right )} + 4 \, e^{\left (2 \, x + e^{x}\right )}}{\log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 34, normalized size = 1.42
method | result | size |
risch | \(x \,{\mathrm e}^{{\mathrm e}^{x}+2 x}+4 x \,{\mathrm e}^{2 x}+\frac {4 \,{\mathrm e}^{2 x} \left ({\mathrm e}^{{\mathrm e}^{x}}+4\right )}{\ln \left (\ln \relax (x )\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 66, normalized size = 2.75 \begin {gather*} 2 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + {\left (e^{x} - 1\right )} e^{\left (e^{x}\right )} + \frac {{\left ({\left (x e^{\left (2 \, x\right )} - e^{x} + 1\right )} \log \left (\log \relax (x)\right ) + 4 \, e^{\left (2 \, x\right )}\right )} e^{\left (e^{x}\right )} + 16 \, e^{\left (2 \, x\right )}}{\log \left (\log \relax (x)\right )} + 2 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\left ({\mathrm {e}}^{2\,x-2\,\ln \relax (x)}\,\ln \relax (x)\,\left (8\,x^3+4\,x^2\right )+{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x-2\,\ln \relax (x)}\,\ln \relax (x)\,\left (x^3\,{\mathrm {e}}^x+x^2+2\,x^3\right )\right )\,{\ln \left (\ln \relax (x)\right )}^2+\left (32\,x^2\,{\mathrm {e}}^{2\,x-2\,\ln \relax (x)}\,\ln \relax (x)+{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x-2\,\ln \relax (x)}\,\ln \relax (x)\,\left (4\,x^2\,{\mathrm {e}}^x+8\,x^2\right )\right )\,\ln \left (\ln \relax (x)\right )-16\,x\,{\mathrm {e}}^{2\,x-2\,\ln \relax (x)}-4\,x\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x-2\,\ln \relax (x)}}{{\ln \left (\ln \relax (x)\right )}^2\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.61, size = 48, normalized size = 2.00 \begin {gather*} \frac {\left (4 x \log {\left (\log {\relax (x )} \right )} + 16\right ) e^{2 x}}{\log {\left (\log {\relax (x )} \right )}} + \frac {\left (x e^{2 x} \log {\left (\log {\relax (x )} \right )} + 4 e^{2 x}\right ) e^{e^{x}}}{\log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________