Optimal. Leaf size=32 \[ e^{-1-\frac {2}{e^{4 e^{x^2} x}-x}+x+\frac {x^3}{-4+x}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 35, normalized size = 1.09 \begin {gather*} e^{15-\frac {2}{e^{4 e^{x^2} x}-x}+\frac {64}{-4+x}+5 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.03, size = 61, normalized size = 1.91 \begin {gather*} e^{\left (\frac {x^{4} + x^{3} - 5 \, x^{2} - {\left (x^{3} + x^{2} - 5 \, x + 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} + 6 \, x - 8}{x^{2} - {\left (x - 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} - 4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.39, size = 85, normalized size = 2.66
method | result | size |
risch | \({\mathrm e}^{\frac {-{\mathrm e}^{4 \,{\mathrm e}^{x^{2}} x} x^{3}+x^{4}-{\mathrm e}^{4 \,{\mathrm e}^{x^{2}} x} x^{2}+x^{3}+5 \,{\mathrm e}^{4 \,{\mathrm e}^{x^{2}} x} x -5 x^{2}-4 \,{\mathrm e}^{4 \,{\mathrm e}^{x^{2}} x}+6 x -8}{\left (x -4\right ) \left (-{\mathrm e}^{4 \,{\mathrm e}^{x^{2}} x}+x \right )}}\) | \(85\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.79, size = 127, normalized size = 3.97 \begin {gather*} e^{\left (x^{2} + 5 \, x + \frac {2 \, e^{\left (4 \, x e^{\left (x^{2}\right )}\right )}}{{\left (x + 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} - 4 \, x - e^{\left (8 \, x e^{\left (x^{2}\right )}\right )}} + \frac {64 \, e^{\left (4 \, x e^{\left (x^{2}\right )}\right )}}{{\left (x - 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} - 4 \, x + 16} - \frac {8}{{\left (x + 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} - 4 \, x - e^{\left (8 \, x e^{\left (x^{2}\right )}\right )}} - \frac {256}{{\left (x - 4\right )} e^{\left (4 \, x e^{\left (x^{2}\right )}\right )} - 4 \, x + 16} + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.34, size = 354, normalized size = 11.06 \begin {gather*} {\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{-\frac {6\,x}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{-\frac {x^3}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{-\frac {x^4}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{\frac {5\,x^2}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{-\frac {5\,x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}}\,{\mathrm {e}}^{\frac {8}{4\,x-4\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{x^2}}-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.84, size = 60, normalized size = 1.88 \begin {gather*} e^{\frac {- x^{4} - x^{3} + 5 x^{2} - 6 x + \left (x^{3} + x^{2} - 5 x + 4\right ) e^{4 x e^{x^{2}}} + 8}{- x^{2} + 4 x + \left (x - 4\right ) e^{4 x e^{x^{2}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________