Optimal. Leaf size=23 \[ 6 (-4+x)+\frac {x}{\log ^2(x)}+2 \left (e^x+x\right ) \log (10 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 12, number of rules used = 7, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6688, 2178, 2297, 2298, 2194, 2554, 14} \begin {gather*} 6 x+\frac {x}{\log ^2(x)}+2 x \log (10 x)+2 e^x \log (10 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2178
Rule 2194
Rule 2297
Rule 2298
Rule 2554
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8+\frac {2 e^x}{x}-\frac {2}{\log ^3(x)}+\frac {1}{\log ^2(x)}+2 \left (1+e^x\right ) \log (10 x)\right ) \, dx\\ &=8 x+2 \int \frac {e^x}{x} \, dx-2 \int \frac {1}{\log ^3(x)} \, dx+2 \int \left (1+e^x\right ) \log (10 x) \, dx+\int \frac {1}{\log ^2(x)} \, dx\\ &=8 x+2 \text {Ei}(x)+\frac {x}{\log ^2(x)}-\frac {x}{\log (x)}+2 e^x \log (10 x)+2 x \log (10 x)-2 \int \frac {e^x+x}{x} \, dx-\int \frac {1}{\log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=8 x+2 \text {Ei}(x)+\frac {x}{\log ^2(x)}+2 e^x \log (10 x)+2 x \log (10 x)+\text {li}(x)-2 \int \left (1+\frac {e^x}{x}\right ) \, dx-\int \frac {1}{\log (x)} \, dx\\ &=6 x+2 \text {Ei}(x)+\frac {x}{\log ^2(x)}+2 e^x \log (10 x)+2 x \log (10 x)-2 \int \frac {e^x}{x} \, dx\\ &=6 x+\frac {x}{\log ^2(x)}+2 e^x \log (10 x)+2 x \log (10 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 1.17 \begin {gather*} 6 x+\frac {x}{\log ^2(x)}+\frac {1}{5} \left (10 e^x+10 x\right ) \log (10 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 36, normalized size = 1.57 \begin {gather*} \frac {2 \, {\left (x + e^{x}\right )} \log \relax (x)^{3} + 2 \, {\left (x \log \left (10\right ) + e^{x} \log \left (10\right ) + 3 \, x\right )} \log \relax (x)^{2} + x}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.38, size = 48, normalized size = 2.09 \begin {gather*} \frac {2 \, x \log \left (10\right ) \log \relax (x)^{2} + 2 \, e^{x} \log \left (10\right ) \log \relax (x)^{2} + 2 \, x \log \relax (x)^{3} + 2 \, e^{x} \log \relax (x)^{3} + 6 \, x \log \relax (x)^{2} + x}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.13
method | result | size |
default | \(6 x +2 \ln \left (10 x \right ) {\mathrm e}^{x}+\frac {x}{\ln \relax (x )^{2}}+2 \ln \left (10 x \right ) x\) | \(26\) |
risch | \(\left (2 \,{\mathrm e}^{x}+2 x \right ) \ln \relax (x )+2 x \ln \relax (5)+2 \,{\mathrm e}^{x} \ln \relax (5)+2 x \ln \relax (2)+2 \,{\mathrm e}^{x} \ln \relax (2)+6 x +\frac {x}{\ln \relax (x )^{2}}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.56, size = 33, normalized size = 1.43 \begin {gather*} 2 \, x \log \left (10 \, x\right ) + 2 \, e^{x} \log \left (10 \, x\right ) + 6 \, x + \Gamma \left (-1, -\log \relax (x)\right ) + 2 \, \Gamma \left (-2, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.81, size = 32, normalized size = 1.39 \begin {gather*} 6\,x+\frac {x}{{\ln \relax (x)}^2}+2\,{\mathrm {e}}^x\,\ln \relax (x)+2\,x\,\ln \left (10\right )+2\,{\mathrm {e}}^x\,\ln \left (10\right )+2\,x\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 34, normalized size = 1.48 \begin {gather*} 2 x \log {\relax (x )} + x \left (2 \log {\left (10 \right )} + 6\right ) + \frac {x}{\log {\relax (x )}^{2}} + \left (2 \log {\relax (x )} + 2 \log {\left (10 \right )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________