Optimal. Leaf size=18 \[ \frac {x \log \left (4 x^2\right )}{5 (12+2 x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {27, 12, 6742, 2314, 31} \begin {gather*} \frac {x \log \left (4 x^2\right )}{10 (x+6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 2314
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+x+3 \log \left (4 x^2\right )}{5 (6+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {6+x+3 \log \left (4 x^2\right )}{(6+x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {1}{6+x}+\frac {3 \log \left (4 x^2\right )}{(6+x)^2}\right ) \, dx\\ &=\frac {1}{5} \log (6+x)+\frac {3}{5} \int \frac {\log \left (4 x^2\right )}{(6+x)^2} \, dx\\ &=\frac {x \log \left (4 x^2\right )}{10 (6+x)}+\frac {1}{5} \log (6+x)-\frac {1}{5} \int \frac {1}{6+x} \, dx\\ &=\frac {x \log \left (4 x^2\right )}{10 (6+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.11 \begin {gather*} \frac {1}{5} \left (\log (x)-\frac {3 \log \left (4 x^2\right )}{6+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 14, normalized size = 0.78 \begin {gather*} \frac {x \log \left (4 \, x^{2}\right )}{10 \, {\left (x + 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 18, normalized size = 1.00 \begin {gather*} -\frac {3 \, \log \left (4 \, x^{2}\right )}{5 \, {\left (x + 6\right )}} + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 15, normalized size = 0.83
method | result | size |
norman | \(\frac {x \ln \left (4 x^{2}\right )}{10 x +60}\) | \(15\) |
risch | \(-\frac {3 \ln \left (4 x^{2}\right )}{5 \left (x +6\right )}+\frac {\ln \relax (x )}{5}\) | \(19\) |
default | \(-\frac {6 \ln \relax (2)}{5 \left (x +6\right )}+\frac {x \ln \left (x^{2}\right )}{10 x +60}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 18, normalized size = 1.00 \begin {gather*} -\frac {3 \, \log \left (4 \, x^{2}\right )}{5 \, {\left (x + 6\right )}} + \frac {1}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.80, size = 15, normalized size = 0.83 \begin {gather*} \frac {x\,\ln \left (4\,x^2\right )}{10\,\left (x+6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.94 \begin {gather*} \frac {\log {\relax (x )}}{5} - \frac {3 \log {\left (4 x^{2} \right )}}{5 x + 30} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________