Optimal. Leaf size=32 \[ -1+\log ^2\left (6+x-\frac {3+\frac {1}{4} \left (e^x-\frac {x}{5}+x^2\right )}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (120+10 e^x-2 x+10 x^2+\left (2 x-10 e^x x-20 x^2\right ) \log (x)+40 x \log ^2(x)\right ) \log \left (\frac {-60-5 e^x+x-5 x^2+(120+20 x) \log (x)}{20 \log (x)}\right )}{\left (-60 x-5 e^x x+x^2-5 x^3\right ) \log (x)+\left (120 x+20 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-60-5 e^x+x-5 x^2-x \log (x)+5 e^x x \log (x)+10 x^2 \log (x)-20 x \log ^2(x)\right ) \log \left (\frac {-60-5 e^x+x-5 x^2+(120+20 x) \log (x)}{20 \log (x)}\right )}{x \log (x) \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 \int \frac {\left (-60-5 e^x+x-5 x^2-x \log (x)+5 e^x x \log (x)+10 x^2 \log (x)-20 x \log ^2(x)\right ) \log \left (\frac {-60-5 e^x+x-5 x^2+(120+20 x) \log (x)}{20 \log (x)}\right )}{x \log (x) \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 \int \left (\frac {(-1+x \log (x)) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)}-\frac {\left (120+81 x-11 x^2+5 x^3-100 x \log (x)-20 x^2 \log (x)\right ) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {(-1+x \log (x)) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-2 \int \frac {\left (120+81 x-11 x^2+5 x^3-100 x \log (x)-20 x^2 \log (x)\right ) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 \int \left (\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )-\frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)}\right ) \, dx-2 \int \left (\frac {81 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}+\frac {120 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )}-\frac {11 x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}+\frac {5 x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}-\frac {20 x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}+\frac {100 \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)}\right ) \, dx\\ &=2 \int \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right ) \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )-2 \int \frac {-60-5 e^x+x-5 x^2+x \left (-1+5 e^x+10 x\right ) \log (x)-20 x \log ^2(x)}{\log (x) \left (60+5 e^x-x+5 x^2-20 (6+x) \log (x)\right )} \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )-2 \int \left (\frac {-1+x \log (x)}{\log (x)}-\frac {120+81 x-11 x^2+5 x^3-100 x \log (x)-20 x^2 \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}\right ) \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )-2 \int \frac {-1+x \log (x)}{\log (x)} \, dx+2 \int \frac {120+81 x-11 x^2+5 x^3-100 x \log (x)-20 x^2 \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )-2 \int \left (x-\frac {1}{\log (x)}\right ) \, dx+2 \int \left (\frac {120}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}+\frac {81 x}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}-\frac {11 x^2}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}+\frac {5 x^3}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}-\frac {100 x \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}-\frac {20 x^2 \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)}\right ) \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=-x^2+2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )+2 \int \frac {1}{\log (x)} \, dx-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx+10 \int \frac {x^3}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-22 \int \frac {x^2}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-40 \int \frac {x^2 \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+162 \int \frac {x}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {x \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx+240 \int \frac {1}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ &=-x^2+2 x \log \left (-\frac {60+5 e^x-x+5 x^2-20 (6+x) \log (x)}{20 \log (x)}\right )+2 \text {li}(x)-2 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \log (x)} \, dx+10 \int \frac {x^3}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-10 \int \frac {x^2 \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-22 \int \frac {x^2}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+22 \int \frac {x \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-40 \int \frac {x^2 \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+40 \int \frac {x \log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx+162 \int \frac {x}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-162 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {x \log (x)}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-200 \int \frac {\log (x) \log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{-60-5 e^x+x-5 x^2+120 \log (x)+20 x \log (x)} \, dx+240 \int \frac {1}{60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)} \, dx-240 \int \frac {\log \left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right )}{x \left (60+5 e^x-x+5 x^2-120 \log (x)-20 x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 31, normalized size = 0.97 \begin {gather*} \log ^2\left (\frac {-60-5 e^x+x-5 x^2+20 (6+x) \log (x)}{20 \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 30, normalized size = 0.94 \begin {gather*} \log \left (-\frac {5 \, x^{2} - 20 \, {\left (x + 6\right )} \log \relax (x) - x + 5 \, e^{x} + 60}{20 \, \log \relax (x)}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (40 x \ln \relax (x )^{2}+\left (-10 \,{\mathrm e}^{x} x -20 x^{2}+2 x \right ) \ln \relax (x )+10 \,{\mathrm e}^{x}+10 x^{2}-2 x +120\right ) \ln \left (\frac {\left (20 x +120\right ) \ln \relax (x )-5 \,{\mathrm e}^{x}-5 x^{2}+x -60}{20 \ln \relax (x )}\right )}{\left (20 x^{2}+120 x \right ) \ln \relax (x )^{2}+\left (-5 \,{\mathrm e}^{x} x -5 x^{3}+x^{2}-60 x \right ) \ln \relax (x )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.74, size = 125, normalized size = 3.91 \begin {gather*} 2 \, {\left (\log \relax (5) + \log \left (\log \relax (x)\right )\right )} \log \left (5 \, x^{2} - 20 \, {\left (x + 6\right )} \log \relax (x) - x + 5 \, e^{x} + 60\right ) - \log \left (5 \, x^{2} - 20 \, {\left (x + 6\right )} \log \relax (x) - x + 5 \, e^{x} + 60\right )^{2} + 2 \, {\left (\log \left (x^{2} - 4 \, {\left (x + 6\right )} \log \relax (x) - \frac {1}{5} \, x + e^{x} + 12\right ) - \log \left (\log \relax (x)\right )\right )} \log \left (-\frac {5 \, x^{2} - 20 \, {\left (x + 6\right )} \log \relax (x) - x + 5 \, e^{x} + 60}{20 \, \log \relax (x)}\right ) - 2 \, \log \relax (5) \log \left (\log \relax (x)\right ) - \log \left (\log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.52, size = 32, normalized size = 1.00 \begin {gather*} {\ln \left (-\frac {\frac {{\mathrm {e}}^x}{4}-\frac {x}{20}-\frac {\ln \relax (x)\,\left (20\,x+120\right )}{20}+\frac {x^2}{4}+3}{\ln \relax (x)}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.26, size = 31, normalized size = 0.97 \begin {gather*} \log {\left (\frac {- \frac {x^{2}}{4} + \frac {x}{20} + \frac {\left (20 x + 120\right ) \log {\relax (x )}}{20} - \frac {e^{x}}{4} - 3}{\log {\relax (x )}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________