Optimal. Leaf size=20 \[ \frac {2+e^5}{4 \log \left (-2+\frac {1}{x}+5 x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 26, normalized size of antiderivative = 1.30, number of steps used = 2, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {1594, 6686} \begin {gather*} \frac {2+e^5}{4 \log \left (\frac {5 x^2-2 x+1}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-10 x^2+e^5 \left (1-5 x^2\right )}{x \left (4-8 x+20 x^2\right ) \log ^2\left (\frac {1-2 x+5 x^2}{x}\right )} \, dx\\ &=\frac {2+e^5}{4 \log \left (\frac {1-2 x+5 x^2}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.00 \begin {gather*} \frac {2+e^5}{4 \log \left (-2+\frac {1}{x}+5 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 23, normalized size = 1.15 \begin {gather*} \frac {e^{5} + 2}{4 \, \log \left (\frac {5 \, x^{2} - 2 \, x + 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 23, normalized size = 1.15 \begin {gather*} \frac {e^{5} + 2}{4 \, \log \left (\frac {5 \, x^{2} - 2 \, x + 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 1.25
method | result | size |
norman | \(\frac {\frac {{\mathrm e}^{5}}{4}+\frac {1}{2}}{\ln \left (\frac {5 x^{2}-2 x +1}{x}\right )}\) | \(25\) |
risch | \(\frac {{\mathrm e}^{5}}{4 \ln \left (\frac {5 x^{2}-2 x +1}{x}\right )}+\frac {1}{2 \ln \left (\frac {5 x^{2}-2 x +1}{x}\right )}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 24, normalized size = 1.20 \begin {gather*} \frac {e^{5} + 2}{4 \, {\left (\log \left (5 \, x^{2} - 2 \, x + 1\right ) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.93, size = 24, normalized size = 1.20 \begin {gather*} \frac {\frac {{\mathrm {e}}^5}{4}+\frac {1}{2}}{\ln \left (\frac {5\,x^2-2\,x+1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.95 \begin {gather*} \frac {2 + e^{5}}{4 \log {\left (\frac {5 x^{2} - 2 x + 1}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________