Optimal. Leaf size=25 \[ 2-x+\frac {x}{-x+\left (x+\frac {e^x x}{2}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32+32 x-16 x^2-8 e^{3 x} x^2-e^{4 x} x^2+e^x \left (-16+16 x-32 x^2\right )+e^{2 x} \left (-4-24 x^2\right )}{16-32 x+16 x^2+8 e^{3 x} x^2+e^{4 x} x^2+e^{2 x} \left (-8 x+24 x^2\right )+e^x \left (-32 x+32 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 e^{3 x} x^2-e^{4 x} x^2-16 \left (2-2 x+x^2\right )-16 e^x \left (1-x+2 x^2\right )-4 e^{2 x} \left (1+6 x^2\right )}{\left (4-\left (2+e^x\right )^2 x\right )^2} \, dx\\ &=\int \left (-1-\frac {4 (1+2 x)}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )}+\frac {16 \left (-1-2 x+2 x^2+e^x x^2\right )}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )^2}\right ) \, dx\\ &=-x-4 \int \frac {1+2 x}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )} \, dx+16 \int \frac {-1-2 x+2 x^2+e^x x^2}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )^2} \, dx\\ &=-x-4 \int \left (\frac {2}{-4+4 x+4 e^x x+e^{2 x} x}+\frac {1}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )}\right ) \, dx+16 \int \left (-\frac {2}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2}-\frac {1}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )^2}+\frac {2 x}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2}+\frac {e^x x}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2}\right ) \, dx\\ &=-x-4 \int \frac {1}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )} \, dx-8 \int \frac {1}{-4+4 x+4 e^x x+e^{2 x} x} \, dx-16 \int \frac {1}{x \left (-4+4 x+4 e^x x+e^{2 x} x\right )^2} \, dx+16 \int \frac {e^x x}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2} \, dx-32 \int \frac {1}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2} \, dx+32 \int \frac {x}{\left (-4+4 x+4 e^x x+e^{2 x} x\right )^2} \, dx\\ &=-x-4 \int \frac {1}{x \left (-4+\left (2+e^x\right )^2 x\right )} \, dx-8 \int \frac {1}{-4+\left (2+e^x\right )^2 x} \, dx-16 \int \frac {1}{x \left (4-\left (2+e^x\right )^2 x\right )^2} \, dx+16 \int \frac {e^x x}{\left (4-\left (2+e^x\right )^2 x\right )^2} \, dx-32 \int \frac {1}{\left (4-\left (2+e^x\right )^2 x\right )^2} \, dx+32 \int \frac {x}{\left (4-\left (2+e^x\right )^2 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 19, normalized size = 0.76 \begin {gather*} -x+\frac {4}{-4+\left (2+e^x\right )^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 45, normalized size = 1.80 \begin {gather*} -\frac {x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{x} + 4 \, x^{2} - 4 \, x - 4}{x e^{\left (2 \, x\right )} + 4 \, x e^{x} + 4 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.15, size = 45, normalized size = 1.80 \begin {gather*} -\frac {x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{x} + 4 \, x^{2} - 4 \, x - 8}{x e^{\left (2 \, x\right )} + 4 \, x e^{x} + 4 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 25, normalized size = 1.00
method | result | size |
risch | \(-x +\frac {4}{x \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x} x +4 x -4}\) | \(25\) |
norman | \(\frac {8 x +x \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x} x -4 x^{2}-4 \,{\mathrm e}^{x} x^{2}-{\mathrm e}^{2 x} x^{2}}{x \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x} x +4 x -4}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 45, normalized size = 1.80 \begin {gather*} -\frac {x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{x} + 4 \, x^{2} - 4 \, x - 4}{x e^{\left (2 \, x\right )} + 4 \, x e^{x} + 4 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,x}\,\left (24\,x^2+4\right )-32\,x+8\,x^2\,{\mathrm {e}}^{3\,x}+x^2\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^x\,\left (32\,x^2-16\,x+16\right )+16\,x^2+32}{8\,x^2\,{\mathrm {e}}^{3\,x}-{\mathrm {e}}^{2\,x}\,\left (8\,x-24\,x^2\right )-32\,x+x^2\,{\mathrm {e}}^{4\,x}-{\mathrm {e}}^x\,\left (32\,x-32\,x^2\right )+16\,x^2+16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.80 \begin {gather*} - x + \frac {4}{x e^{2 x} + 4 x e^{x} + 4 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________