Optimal. Leaf size=25 \[ -5+e^{2-2 (-x+\log (2)) \log \left (-2+\frac {2}{x}\right )}+2 x \]
________________________________________________________________________________________
Rubi [F] time = 4.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+2 x^2+e^{2+2 (x-\log (2)) \log \left (\frac {2-2 x}{x}\right )} \left (2 x-2 \log (2)+\left (-2 x+2 x^2\right ) \log \left (\frac {2-2 x}{x}\right )\right )}{-x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x+2 x^2+e^{2+2 (x-\log (2)) \log \left (\frac {2-2 x}{x}\right )} \left (2 x-2 \log (2)+\left (-2 x+2 x^2\right ) \log \left (\frac {2-2 x}{x}\right )\right )}{(-1+x) x} \, dx\\ &=\int \left (2+\frac {2 e^2 \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \left (x-\log (2)-x \log \left (-2+\frac {2}{x}\right )+x^2 \log \left (-2+\frac {2}{x}\right )\right )}{(-1+x) x}\right ) \, dx\\ &=2 x+\left (2 e^2\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \left (x-\log (2)-x \log \left (-2+\frac {2}{x}\right )+x^2 \log \left (-2+\frac {2}{x}\right )\right )}{(-1+x) x} \, dx\\ &=2 x+\left (2 e^2\right ) \int \left (\frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} (x-\log (2))}{(-1+x) x}+\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \log \left (-2+\frac {2}{x}\right )\right ) \, dx\\ &=2 x+\left (2 e^2\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} (x-\log (2))}{(-1+x) x} \, dx+\left (2 e^2\right ) \int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \log \left (-2+\frac {2}{x}\right ) \, dx\\ &=2 x+\left (2 e^2\right ) \int \left (\frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} (1-\log (2))}{-1+x}+\frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \log (2)}{x}\right ) \, dx-\left (2 e^2\right ) \int \frac {\int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx}{(-1+x) x} \, dx+\left (2 e^2 \log \left (-2+\frac {2}{x}\right )\right ) \int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx\\ &=2 x-\left (2 e^2\right ) \int \left (\frac {\int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx}{-1+x}-\frac {\int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx}{x}\right ) \, dx+\left (2 e^2 (1-\log (2))\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)}}{-1+x} \, dx+\left (2 e^2 \log (2)\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)}}{x} \, dx+\left (2 e^2 \log \left (-2+\frac {2}{x}\right )\right ) \int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx\\ &=2 x-\left (2 e^2\right ) \int \frac {\int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx}{-1+x} \, dx+\left (2 e^2\right ) \int \frac {\int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx}{x} \, dx+\left (2 e^2 (1-\log (2))\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)}}{-1+x} \, dx+\left (2 e^2 \log (2)\right ) \int \frac {\left (-2+\frac {2}{x}\right )^{2 x-\log (4)}}{x} \, dx+\left (2 e^2 \log \left (-2+\frac {2}{x}\right )\right ) \int \left (-2+\frac {2}{x}\right )^{2 x-\log (4)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.18, size = 24, normalized size = 0.96 \begin {gather*} e^2 \left (-2+\frac {2}{x}\right )^{2 x-\log (4)}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 24, normalized size = 0.96 \begin {gather*} 2 \, x + e^{\left (2 \, {\left (x - \log \relax (2)\right )} \log \left (-\frac {2 \, {\left (x - 1\right )}}{x}\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.79, size = 30, normalized size = 1.20 \begin {gather*} 2 \, x + e^{\left (2 \, x \log \left (\frac {2}{x} - 2\right ) - 2 \, \log \relax (2) \log \left (\frac {2}{x} - 2\right ) + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 26, normalized size = 1.04
method | result | size |
risch | \(2 x +\left (\frac {-2 x +2}{x}\right )^{-2 \ln \relax (2)+2 x} {\mathrm e}^{2}\) | \(26\) |
default | \(2 x +{\mathrm e}^{\left (-2 \ln \relax (2)+2 x \right ) \ln \left (\frac {-2 x +2}{x}\right )+2}\) | \(27\) |
norman | \(2 x +{\mathrm e}^{\left (-2 \ln \relax (2)+2 x \right ) \ln \left (\frac {-2 x +2}{x}\right )+2}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.72, size = 55, normalized size = 2.20 \begin {gather*} \left (-1\right )^{2 \, \log \relax (2)} e^{\left (2 i \, \pi x + 2 \, x \log \relax (2) - 2 \, \log \relax (2)^{2} + 2 \, x \log \left (x - 1\right ) - 2 \, \log \relax (2) \log \left (x - 1\right ) - 2 \, x \log \relax (x) + 2 \, \log \relax (2) \log \relax (x) + 2\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 32, normalized size = 1.28 \begin {gather*} 2\,x+\frac {{\mathrm {e}}^2\,{\left (\frac {2}{x}-2\right )}^{2\,x}}{{\left (\frac {2}{x}-2\right )}^{2\,\ln \relax (2)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 20, normalized size = 0.80 \begin {gather*} 2 x + e^{2 \left (x - \log {\relax (2 )}\right ) \log {\left (\frac {2 - 2 x}{x} \right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________