Optimal. Leaf size=35 \[ \frac {4 \log ^2\left (\frac {3-\log \left (x \left (x-5 x^2\right )\right )}{\left (2-e^x\right ) x}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 41.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (80-480 x+e^x \left (-40+216 x+120 x^2\right )+\left (-16+80 x+e^x \left (8-32 x-40 x^2\right )\right ) \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )+\left (48-240 x+e^x (-24+120 x)+\left (-16+e^x (8-40 x)+80 x\right ) \log \left (x^2-5 x^3\right )\right ) \log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )}{-6 x^3+30 x^4+e^x \left (3 x^3-15 x^4\right )+\left (2 x^3-10 x^4+e^x \left (-x^3+5 x^4\right )\right ) \log \left (x^2-5 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (80-480 x+e^x \left (-40+216 x+120 x^2\right )+\left (-16+80 x+e^x \left (8-32 x-40 x^2\right )\right ) \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )\right )-\left (48-240 x+e^x (-24+120 x)+\left (-16+e^x (8-40 x)+80 x\right ) \log \left (x^2-5 x^3\right )\right ) \log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )}{\left (2-e^x\right ) (1-5 x) x^3 \left (3-\log \left (x^2-5 x^3\right )\right )} \, dx\\ &=\int \left (-\frac {16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{\left (-2+e^x\right ) x^2}-\frac {8 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right ) \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )+3 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )-15 x \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )-\log \left (x^2-5 x^3\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )+5 x \log \left (x^2-5 x^3\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right )}{x^3 (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )}\right ) \, dx\\ &=-\left (8 \int \frac {\log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right ) \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )+3 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )-15 x \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )-\log \left (x^2-5 x^3\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )+5 x \log \left (x^2-5 x^3\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right )}{x^3 (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx\right )-16 \int \frac {\log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{\left (-2+e^x\right ) x^2} \, dx\\ &=-\left (8 \int \frac {\log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right ) \left (5-27 x-15 x^2+(3-15 x) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )+(-1+5 x) \log \left (x^2-5 x^3\right ) \left (1+x+\log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right )\right )}{(1-5 x) x^3 \left (3-\log \left (x^2-5 x^3\right )\right )} \, dx\right )+16 \int \frac {\left (10-60 x+e^x \left (-5+27 x+15 x^2\right )-(-1+5 x) \left (-2+e^x (1+x)\right ) \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{\left (-2+e^x\right ) x (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-\left (16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx\\ &=-\left (8 \int \left (\frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3 (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )}+\frac {\log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3}\right ) \, dx\right )+16 \int \left (-\frac {2 \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{-2+e^x}-\frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{x (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )}\right ) \, dx-\left (16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx\\ &=-\left (8 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3 (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx\right )-8 \int \frac {\log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3} \, dx-16 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{x (-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-32 \int \frac {\int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{-2+e^x} \, dx-\left (16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx\\ &=-\left (8 \int \frac {\log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3} \, dx\right )-8 \int \left (-\frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3 \left (-3+\log \left (x^2-5 x^3\right )\right )}-\frac {5 \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^2 \left (-3+\log \left (x^2-5 x^3\right )\right )}-\frac {25 \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x \left (-3+\log \left (x^2-5 x^3\right )\right )}+\frac {125 \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{(-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )}\right ) \, dx-16 \int \left (-\frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{x \left (-3+\log \left (x^2-5 x^3\right )\right )}+\frac {5 \left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{(-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )}\right ) \, dx-32 \int \frac {\int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{-2+e^x} \, dx-\left (16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx\\ &=8 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3 \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-8 \int \frac {\log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^3} \, dx+16 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{x \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-32 \int \frac {\int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{-2+e^x} \, dx+40 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x^2 \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-80 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx}{(-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx+200 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{x \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-1000 \int \frac {\left (5-27 x-15 x^2-\log \left (x^2-5 x^3\right )+4 x \log \left (x^2-5 x^3\right )+5 x^2 \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )}{(-1+5 x) \left (-3+\log \left (x^2-5 x^3\right )\right )} \, dx-\left (16 \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{\left (-2+e^x\right ) x}\right )\right ) \int \frac {1}{\left (-2+e^x\right ) x^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.46, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (80-480 x+e^x \left (-40+216 x+120 x^2\right )+\left (-16+80 x+e^x \left (8-32 x-40 x^2\right )\right ) \log \left (x^2-5 x^3\right )\right ) \log \left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )+\left (48-240 x+e^x (-24+120 x)+\left (-16+e^x (8-40 x)+80 x\right ) \log \left (x^2-5 x^3\right )\right ) \log ^2\left (\frac {-3+\log \left (x^2-5 x^3\right )}{-2 x+e^x x}\right )}{-6 x^3+30 x^4+e^x \left (3 x^3-15 x^4\right )+\left (2 x^3-10 x^4+e^x \left (-x^3+5 x^4\right )\right ) \log \left (x^2-5 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 31, normalized size = 0.89 \begin {gather*} \frac {4 \, \log \left (\frac {\log \left (-5 \, x^{3} + x^{2}\right ) - 3}{x e^{x} - 2 \, x}\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left ({\left (3 \, {\left (5 \, x - 1\right )} e^{x} - {\left ({\left (5 \, x - 1\right )} e^{x} - 10 \, x + 2\right )} \log \left (-5 \, x^{3} + x^{2}\right ) - 30 \, x + 6\right )} \log \left (\frac {\log \left (-5 \, x^{3} + x^{2}\right ) - 3}{x e^{x} - 2 \, x}\right )^{2} + {\left ({\left (15 \, x^{2} + 27 \, x - 5\right )} e^{x} - {\left ({\left (5 \, x^{2} + 4 \, x - 1\right )} e^{x} - 10 \, x + 2\right )} \log \left (-5 \, x^{3} + x^{2}\right ) - 60 \, x + 10\right )} \log \left (\frac {\log \left (-5 \, x^{3} + x^{2}\right ) - 3}{x e^{x} - 2 \, x}\right )\right )}}{30 \, x^{4} - 6 \, x^{3} - 3 \, {\left (5 \, x^{4} - x^{3}\right )} e^{x} - {\left (10 \, x^{4} - 2 \, x^{3} - {\left (5 \, x^{4} - x^{3}\right )} e^{x}\right )} \log \left (-5 \, x^{3} + x^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 8.41, size = 47401, normalized size = 1354.31
method | result | size |
risch | \(\text {Expression too large to display}\) | \(47401\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 64, normalized size = 1.83 \begin {gather*} \frac {4 \, {\left (\log \relax (x)^{2} + 2 \, \log \relax (x) \log \left (e^{x} - 2\right ) + \log \left (e^{x} - 2\right )^{2} - 2 \, {\left (\log \relax (x) + \log \left (e^{x} - 2\right )\right )} \log \left (2 \, \log \relax (x) + \log \left (-5 \, x + 1\right ) - 3\right ) + \log \left (2 \, \log \relax (x) + \log \left (-5 \, x + 1\right ) - 3\right )^{2}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 33, normalized size = 0.94 \begin {gather*} \frac {4\,{\ln \left (-\frac {\ln \left (x^2-5\,x^3\right )-3}{2\,x-x\,{\mathrm {e}}^x}\right )}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 41.25, size = 27, normalized size = 0.77 \begin {gather*} \frac {4 \log {\left (\frac {\log {\left (- 5 x^{3} + x^{2} \right )} - 3}{x e^{x} - 2 x} \right )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________