Optimal. Leaf size=23 \[ 4-e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}+x \]
________________________________________________________________________________________
Rubi [F] time = 2.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x \log ^3(2 x)+e^{\frac {1-10 x+4 \log ^2(2 x)}{2 \log ^2(2 x)}} (1-10 x+5 x \log (2 x))}{x \log ^3(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}} (1-10 x+5 x \log (2 x))}{x \log ^3(2 x)}\right ) \, dx\\ &=x+\int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}} (1-10 x+5 x \log (2 x))}{x \log ^3(2 x)} \, dx\\ &=x+\int \left (\frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}} (1-10 x)}{x \log ^3(2 x)}+\frac {5 e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^2(2 x)}\right ) \, dx\\ &=x+5 \int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^2(2 x)} \, dx+\int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}} (1-10 x)}{x \log ^3(2 x)} \, dx\\ &=x+5 \int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^2(2 x)} \, dx+\int \left (-\frac {10 e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^3(2 x)}+\frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{x \log ^3(2 x)}\right ) \, dx\\ &=x+5 \int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^2(2 x)} \, dx-10 \int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{\log ^3(2 x)} \, dx+\int \frac {e^{2+\frac {\frac {1}{2}-5 x}{\log ^2(2 x)}}}{x \log ^3(2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 23, normalized size = 1.00 \begin {gather*} -e^{2+\frac {1-10 x}{2 \log ^2(2 x)}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 26, normalized size = 1.13 \begin {gather*} x - e^{\left (\frac {4 \, \log \left (2 \, x\right )^{2} - 10 \, x + 1}{2 \, \log \left (2 \, x\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.17
method | result | size |
default | \(x -{\mathrm e}^{\frac {4 \ln \left (2 x \right )^{2}-10 x +1}{2 \ln \left (2 x \right )^{2}}}\) | \(27\) |
risch | \(x -{\mathrm e}^{\frac {4 \ln \left (2 x \right )^{2}-10 x +1}{2 \ln \left (2 x \right )^{2}}}\) | \(27\) |
norman | \(\frac {x \ln \left (2 x \right )^{2}-\ln \left (2 x \right )^{2} {\mathrm e}^{\frac {4 \ln \left (2 x \right )^{2}-10 x +1}{2 \ln \left (2 x \right )^{2}}}}{\ln \left (2 x \right )^{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 46, normalized size = 2.00 \begin {gather*} x - e^{\left (-\frac {5 \, x}{\log \relax (2)^{2} + 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2}} + \frac {1}{2 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2}\right )}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.94, size = 118, normalized size = 5.13 \begin {gather*} x-x^{\frac {4\,\ln \relax (2)}{{\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{\frac {2\,{\ln \relax (2)}^2}{{\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{\frac {1}{2\,\left ({\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2\right )}}\,{\mathrm {e}}^{\frac {2\,{\ln \relax (x)}^2}{{\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2}}\,{\mathrm {e}}^{-\frac {5\,x}{{\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.04 \begin {gather*} x - e^{\frac {- 5 x + 2 \log {\left (2 x \right )}^{2} + \frac {1}{2}}{\log {\left (2 x \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________