Optimal. Leaf size=32 \[ \frac {3 \left (-4+e^{e^x} x\right )}{-e^{x/5}+\frac {4 \log (25)}{3 x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 5.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-108 e^{x/5} x^4-1440 x \log (25)+e^{e^x} \left (e^{x/5} \left (-135 x^4+27 x^5\right )+540 x^2 \log (25)+e^x \left (-135 e^{x/5} x^5+180 x^3 \log (25)\right )\right )}{45 e^{2 x/5} x^4-120 e^{x/5} x^2 \log (25)+80 \log ^2(25)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-108 e^{x/5} x^4-1440 x \log (25)+e^{e^x} \left (e^{x/5} \left (-135 x^4+27 x^5\right )+540 x^2 \log (25)+e^x \left (-135 e^{x/5} x^5+180 x^3 \log (25)\right )\right )}{5 \left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-108 e^{x/5} x^4-1440 x \log (25)+e^{e^x} \left (e^{x/5} \left (-135 x^4+27 x^5\right )+540 x^2 \log (25)+e^x \left (-135 e^{x/5} x^5+180 x^3 \log (25)\right )\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-15 e^{e^x+\frac {4 x}{5}} x-\frac {20 e^{e^x+\frac {3 x}{5}} \log (25)}{x}+\frac {36 x (10+x) \left (-4+e^{e^x} x\right ) \log (25)}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}-\frac {80 e^{e^x+\frac {2 x}{5}} \log ^2(25)}{3 x^3}-\frac {320 e^{\frac {1}{5} \left (5 e^x+x\right )} \log ^3(25)}{9 x^5}-\frac {1280 e^{e^x} \log ^4(25)}{27 x^7}+\frac {-972 x^9-1215 e^{e^x} x^9+243 e^{e^x} x^{10}-5120 e^{e^x} \log ^5(25)}{27 x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )}\right ) \, dx\\ &=\frac {1}{135} \int \frac {-972 x^9-1215 e^{e^x} x^9+243 e^{e^x} x^{10}-5120 e^{e^x} \log ^5(25)}{x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )} \, dx-3 \int e^{e^x+\frac {4 x}{5}} x \, dx-(4 \log (25)) \int \frac {e^{e^x+\frac {3 x}{5}}}{x} \, dx+\frac {1}{5} (36 \log (25)) \int \frac {x (10+x) \left (-4+e^{e^x} x\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx-\frac {1}{3} \left (16 \log ^2(25)\right ) \int \frac {e^{e^x+\frac {2 x}{5}}}{x^3} \, dx-\frac {1}{9} \left (64 \log ^3(25)\right ) \int \frac {e^{\frac {1}{5} \left (5 e^x+x\right )}}{x^5} \, dx-\frac {1}{27} \left (256 \log ^4(25)\right ) \int \frac {e^{e^x}}{x^7} \, dx\\ &=\frac {1}{135} \int \left (-\frac {972 x^2}{3 e^{x/5} x^2-4 \log (25)}-\frac {1215 e^{e^x} x^2}{3 e^{x/5} x^2-4 \log (25)}+\frac {243 e^{e^x} x^3}{3 e^{x/5} x^2-4 \log (25)}-\frac {5120 e^{e^x} \log ^5(25)}{x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )}\right ) \, dx-3 \int e^{e^x+\frac {4 x}{5}} x \, dx-(4 \log (25)) \int \frac {e^{e^x+\frac {3 x}{5}}}{x} \, dx+\frac {1}{5} (36 \log (25)) \int \left (\frac {10 x \left (-4+e^{e^x} x\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}+\frac {x^2 \left (-4+e^{e^x} x\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}\right ) \, dx-\frac {1}{3} \left (16 \log ^2(25)\right ) \int \frac {e^{e^x+\frac {2 x}{5}}}{x^3} \, dx-\frac {1}{9} \left (64 \log ^3(25)\right ) \int \frac {e^{\frac {1}{5} \left (5 e^x+x\right )}}{x^5} \, dx-\frac {1}{27} \left (256 \log ^4(25)\right ) \int \frac {e^{e^x}}{x^7} \, dx\\ &=\frac {9}{5} \int \frac {e^{e^x} x^3}{3 e^{x/5} x^2-4 \log (25)} \, dx-3 \int e^{e^x+\frac {4 x}{5}} x \, dx-\frac {36}{5} \int \frac {x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-9 \int \frac {e^{e^x} x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-(4 \log (25)) \int \frac {e^{e^x+\frac {3 x}{5}}}{x} \, dx+\frac {1}{5} (36 \log (25)) \int \frac {x^2 \left (-4+e^{e^x} x\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx+(72 \log (25)) \int \frac {x \left (-4+e^{e^x} x\right )}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx-\frac {1}{3} \left (16 \log ^2(25)\right ) \int \frac {e^{e^x+\frac {2 x}{5}}}{x^3} \, dx-\frac {1}{9} \left (64 \log ^3(25)\right ) \int \frac {e^{\frac {1}{5} \left (5 e^x+x\right )}}{x^5} \, dx-\frac {1}{27} \left (256 \log ^4(25)\right ) \int \frac {e^{e^x}}{x^7} \, dx-\frac {1}{27} \left (1024 \log ^5(25)\right ) \int \frac {e^{e^x}}{x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )} \, dx\\ &=\frac {9}{5} \int \frac {e^{e^x} x^3}{3 e^{x/5} x^2-4 \log (25)} \, dx-3 \int e^{e^x+\frac {4 x}{5}} x \, dx-\frac {36}{5} \int \frac {x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-9 \int \frac {e^{e^x} x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-(4 \log (25)) \int \frac {e^{e^x+\frac {3 x}{5}}}{x} \, dx+\frac {1}{5} (36 \log (25)) \int \left (-\frac {4 x^2}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}+\frac {e^{e^x} x^3}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}\right ) \, dx+(72 \log (25)) \int \left (-\frac {4 x}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}+\frac {e^{e^x} x^2}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2}\right ) \, dx-\frac {1}{3} \left (16 \log ^2(25)\right ) \int \frac {e^{e^x+\frac {2 x}{5}}}{x^3} \, dx-\frac {1}{9} \left (64 \log ^3(25)\right ) \int \frac {e^{\frac {1}{5} \left (5 e^x+x\right )}}{x^5} \, dx-\frac {1}{27} \left (256 \log ^4(25)\right ) \int \frac {e^{e^x}}{x^7} \, dx-\frac {1}{27} \left (1024 \log ^5(25)\right ) \int \frac {e^{e^x}}{x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )} \, dx\\ &=\frac {9}{5} \int \frac {e^{e^x} x^3}{3 e^{x/5} x^2-4 \log (25)} \, dx-3 \int e^{e^x+\frac {4 x}{5}} x \, dx-\frac {36}{5} \int \frac {x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-9 \int \frac {e^{e^x} x^2}{3 e^{x/5} x^2-4 \log (25)} \, dx-(4 \log (25)) \int \frac {e^{e^x+\frac {3 x}{5}}}{x} \, dx+\frac {1}{5} (36 \log (25)) \int \frac {e^{e^x} x^3}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx-\frac {1}{5} (144 \log (25)) \int \frac {x^2}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx+(72 \log (25)) \int \frac {e^{e^x} x^2}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx-(288 \log (25)) \int \frac {x}{\left (3 e^{x/5} x^2-4 \log (25)\right )^2} \, dx-\frac {1}{3} \left (16 \log ^2(25)\right ) \int \frac {e^{e^x+\frac {2 x}{5}}}{x^3} \, dx-\frac {1}{9} \left (64 \log ^3(25)\right ) \int \frac {e^{\frac {1}{5} \left (5 e^x+x\right )}}{x^5} \, dx-\frac {1}{27} \left (256 \log ^4(25)\right ) \int \frac {e^{e^x}}{x^7} \, dx-\frac {1}{27} \left (1024 \log ^5(25)\right ) \int \frac {e^{e^x}}{x^7 \left (3 e^{x/5} x^2-4 \log (25)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 33, normalized size = 1.03 \begin {gather*} -\frac {9 x^2 \left (-4+e^{e^x} x\right )}{3 e^{x/5} x^2-4 \log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 31, normalized size = 0.97 \begin {gather*} -\frac {9 \, {\left (x^{3} e^{\left (e^{x}\right )} - 4 \, x^{2}\right )}}{3 \, x^{2} e^{\left (\frac {1}{5} \, x\right )} - 8 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {9 \, {\left (12 \, x^{4} e^{\left (\frac {1}{5} \, x\right )} - {\left (120 \, x^{2} \log \relax (5) + 3 \, {\left (x^{5} - 5 \, x^{4}\right )} e^{\left (\frac {1}{5} \, x\right )} - 5 \, {\left (3 \, x^{5} e^{\left (\frac {1}{5} \, x\right )} - 8 \, x^{3} \log \relax (5)\right )} e^{x}\right )} e^{\left (e^{x}\right )} + 320 \, x \log \relax (5)\right )}}{5 \, {\left (9 \, x^{4} e^{\left (\frac {2}{5} \, x\right )} - 48 \, x^{2} e^{\left (\frac {1}{5} \, x\right )} \log \relax (5) + 64 \, \log \relax (5)^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-135 x^{5} {\mathrm e}^{\frac {x}{5}}+360 x^{3} \ln \relax (5)\right ) {\mathrm e}^{x}+\left (27 x^{5}-135 x^{4}\right ) {\mathrm e}^{\frac {x}{5}}+1080 x^{2} \ln \relax (5)\right ) {\mathrm e}^{{\mathrm e}^{x}}-108 x^{4} {\mathrm e}^{\frac {x}{5}}-2880 x \ln \relax (5)}{45 x^{4} {\mathrm e}^{\frac {2 x}{5}}-240 x^{2} \ln \relax (5) {\mathrm e}^{\frac {x}{5}}+320 \ln \relax (5)^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {4096}{27} \, \int \frac {e^{\left (e^{x}\right )}}{x^{7}}\,{d x} \log \relax (5)^{4} - \frac {512}{9} \, \int \frac {e^{\left (\frac {1}{5} \, x + e^{x}\right )}}{x^{5}}\,{d x} \log \relax (5)^{3} - \frac {64}{3} \, \int \frac {e^{\left (\frac {2}{5} \, x + e^{x}\right )}}{x^{3}}\,{d x} \log \relax (5)^{2} - 8 \, \int \frac {e^{\left (\frac {3}{5} \, x + e^{x}\right )}}{x}\,{d x} \log \relax (5) - \frac {9 \, {\left (x^{3} e^{\left (e^{x}\right )} - 4 \, x^{2}\right )}}{3 \, x^{2} e^{\left (\frac {1}{5} \, x\right )} - 8 \, \log \relax (5)} - 3 \, \int x e^{\left (\frac {4}{5} \, x + e^{x}\right )}\,{d x} + \frac {9}{5} \, \int \frac {5 \, {\left (243 \, x^{10} e^{x} - 32768 \, \log \relax (5)^{5}\right )} e^{\left (e^{x}\right )}}{243 \, {\left (3 \, x^{9} e^{\left (\frac {1}{5} \, x\right )} - 8 \, x^{7} \log \relax (5)\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 28, normalized size = 0.88 \begin {gather*} \frac {9\,x^2\,\left (x\,{\mathrm {e}}^{{\mathrm {e}}^x}-4\right )}{8\,\ln \relax (5)-3\,x^2\,{\mathrm {e}}^{x/5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 44, normalized size = 1.38 \begin {gather*} - \frac {9 x^{3} e^{e^{x}}}{3 x^{2} e^{\frac {x}{5}} - 8 \log {\relax (5 )}} + \frac {36 x^{2}}{3 x^{2} e^{\frac {x}{5}} - 8 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________