Optimal. Leaf size=33 \[ e^3+10 e^{3+x} x^2 \left (e^4+\frac {1}{5} \left (-x+\frac {x^2}{4}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {12, 2196, 2176, 2194} \begin {gather*} \frac {1}{2} e^{x+3} x^4-2 e^{x+3} x^3+10 e^{x+7} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{3+x} \left (-12 x^2+x^4+e^4 \left (40 x+20 x^2\right )\right ) \, dx\\ &=\frac {1}{2} \int \left (-12 e^{3+x} x^2+e^{3+x} x^4+20 e^{7+x} x (2+x)\right ) \, dx\\ &=\frac {1}{2} \int e^{3+x} x^4 \, dx-6 \int e^{3+x} x^2 \, dx+10 \int e^{7+x} x (2+x) \, dx\\ &=-6 e^{3+x} x^2+\frac {1}{2} e^{3+x} x^4-2 \int e^{3+x} x^3 \, dx+10 \int \left (2 e^{7+x} x+e^{7+x} x^2\right ) \, dx+12 \int e^{3+x} x \, dx\\ &=12 e^{3+x} x-6 e^{3+x} x^2-2 e^{3+x} x^3+\frac {1}{2} e^{3+x} x^4+6 \int e^{3+x} x^2 \, dx+10 \int e^{7+x} x^2 \, dx-12 \int e^{3+x} \, dx+20 \int e^{7+x} x \, dx\\ &=-12 e^{3+x}+12 e^{3+x} x+20 e^{7+x} x+10 e^{7+x} x^2-2 e^{3+x} x^3+\frac {1}{2} e^{3+x} x^4-12 \int e^{3+x} x \, dx-20 \int e^{7+x} \, dx-20 \int e^{7+x} x \, dx\\ &=-12 e^{3+x}-20 e^{7+x}+10 e^{7+x} x^2-2 e^{3+x} x^3+\frac {1}{2} e^{3+x} x^4+12 \int e^{3+x} \, dx+20 \int e^{7+x} \, dx\\ &=10 e^{7+x} x^2-2 e^{3+x} x^3+\frac {1}{2} e^{3+x} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 0.70 \begin {gather*} \frac {1}{2} e^{3+x} x^2 \left (20 e^4+(-4+x) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 22, normalized size = 0.67 \begin {gather*} \frac {1}{2} \, {\left (x^{4} - 4 \, x^{3} + 20 \, x^{2} e^{4}\right )} e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 25, normalized size = 0.76 \begin {gather*} 10 \, x^{2} e^{\left (x + 7\right )} + \frac {1}{2} \, {\left (x^{4} - 4 \, x^{3}\right )} e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.64
method | result | size |
gosper | \(\frac {{\mathrm e}^{3+x} \left (x^{2}+20 \,{\mathrm e}^{4}-4 x \right ) x^{2}}{2}\) | \(21\) |
risch | \(\frac {\left (x^{4}-4 x^{3}+20 x^{2} {\mathrm e}^{4}\right ) {\mathrm e}^{3+x}}{2}\) | \(23\) |
norman | \(-2 x^{3} {\mathrm e}^{3+x}+\frac {x^{4} {\mathrm e}^{3+x}}{2}+10 x^{2} {\mathrm e}^{4} {\mathrm e}^{3+x}\) | \(31\) |
meijerg | \(-\left (10 \,{\mathrm e}^{4}-6\right ) {\mathrm e}^{3} \left (2-\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}\right )+20 \,{\mathrm e}^{7} \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )-\frac {{\mathrm e}^{3} \left (24-\frac {\left (5 x^{4}-20 x^{3}+60 x^{2}-120 x +120\right ) {\mathrm e}^{x}}{5}\right )}{2}\) | \(73\) |
derivativedivides | \(\frac {{\mathrm e}^{3+x} \left (3+x \right )^{4}}{2}-8 \,{\mathrm e}^{3+x} \left (3+x \right )^{3}+45 \,{\mathrm e}^{3+x} \left (3+x \right )^{2}-108 \,{\mathrm e}^{3+x} \left (3+x \right )+\frac {189 \,{\mathrm e}^{3+x}}{2}+30 \,{\mathrm e}^{3+x} {\mathrm e}^{4}-40 \,{\mathrm e}^{4} \left ({\mathrm e}^{3+x} \left (3+x \right )-{\mathrm e}^{3+x}\right )+10 \,{\mathrm e}^{4} \left ({\mathrm e}^{3+x} \left (3+x \right )^{2}-2 \,{\mathrm e}^{3+x} \left (3+x \right )+2 \,{\mathrm e}^{3+x}\right )\) | \(107\) |
default | \(\frac {{\mathrm e}^{3+x} \left (3+x \right )^{4}}{2}-8 \,{\mathrm e}^{3+x} \left (3+x \right )^{3}+45 \,{\mathrm e}^{3+x} \left (3+x \right )^{2}-108 \,{\mathrm e}^{3+x} \left (3+x \right )+\frac {189 \,{\mathrm e}^{3+x}}{2}+30 \,{\mathrm e}^{3+x} {\mathrm e}^{4}-40 \,{\mathrm e}^{4} \left ({\mathrm e}^{3+x} \left (3+x \right )-{\mathrm e}^{3+x}\right )+10 \,{\mathrm e}^{4} \left ({\mathrm e}^{3+x} \left (3+x \right )^{2}-2 \,{\mathrm e}^{3+x} \left (3+x \right )+2 \,{\mathrm e}^{3+x}\right )\) | \(107\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 88, normalized size = 2.67 \begin {gather*} \frac {1}{2} \, {\left (x^{4} e^{3} - 4 \, x^{3} e^{3} + 12 \, x^{2} e^{3} - 24 \, x e^{3} + 24 \, e^{3}\right )} e^{x} + 10 \, {\left (x^{2} e^{7} - 2 \, x e^{7} + 2 \, e^{7}\right )} e^{x} - 6 \, {\left (x^{2} e^{3} - 2 \, x e^{3} + 2 \, e^{3}\right )} e^{x} + 20 \, {\left (x e^{7} - e^{7}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 20, normalized size = 0.61 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{x+3}\,\left (x^2-4\,x+20\,{\mathrm {e}}^4\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.67 \begin {gather*} \frac {\left (x^{4} - 4 x^{3} + 20 x^{2} e^{4}\right ) e^{x + 3}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________