Optimal. Leaf size=36 \[ 5 \left (e^4-e^{5 e^5}-e^{\frac {-e^{2/x}+x}{x}}\right )+x \]
________________________________________________________________________________________
Rubi [F] time = 0.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2}{x}+\frac {-e^{2/x}+x}{x}} (-10-5 x)+x^3}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {5 e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}} (2+x)}{x^3}\right ) \, dx\\ &=x-5 \int \frac {e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}} (2+x)}{x^3} \, dx\\ &=x-5 \int \left (\frac {2 e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}}}{x^3}+\frac {e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}}}{x^2}\right ) \, dx\\ &=x-5 \int \frac {e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}}}{x^2} \, dx-10 \int \frac {e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}}}{x^3} \, dx\\ &=x+5 \operatorname {Subst}\left (\int e^{1+2 x-e^{2 x} x} \, dx,x,\frac {1}{x}\right )-10 \int \frac {e^{1+\frac {2}{x}-\frac {e^{2/x}}{x}}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.56 \begin {gather*} -5 e^{1-\frac {e^{2/x}}{x}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 34, normalized size = 0.94 \begin {gather*} {\left (x e^{\frac {2}{x}} - 5 \, e^{\left (\frac {x - e^{\frac {2}{x}} + 2}{x}\right )}\right )} e^{\left (-\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.87, size = 34, normalized size = 0.94 \begin {gather*} {\left (x e^{\frac {2}{x}} - 5 \, e^{\left (\frac {x - e^{\frac {2}{x}} + 2}{x}\right )}\right )} e^{\left (-\frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.56
method | result | size |
risch | \(x -5 \,{\mathrm e}^{\frac {-{\mathrm e}^{\frac {2}{x}}+x}{x}}\) | \(20\) |
norman | \(\frac {x^{3}-5 x^{2} {\mathrm e}^{\frac {-{\mathrm e}^{\frac {2}{x}}+x}{x}}}{x^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 18, normalized size = 0.50 \begin {gather*} x - 5 \, e^{\left (-\frac {e^{\frac {2}{x}}}{x} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.89, size = 18, normalized size = 0.50 \begin {gather*} x-5\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{2/x}}{x}}\,\mathrm {e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 12, normalized size = 0.33 \begin {gather*} x - 5 e^{\frac {x - e^{\frac {2}{x}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________