Optimal. Leaf size=27 \[ 4 \left (-e-\left (\frac {3}{2}+e^5-e^x\right )^2+3 x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.09, antiderivative size = 119, normalized size of antiderivative = 4.41, number of steps used = 8, number of rules used = 3, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {2194, 2176, 2187} \begin {gather*} 36 x^2-6 \left (9+4 e+12 e^5+4 e^{10}\right ) x+12 e^{2 x}+4 e^{4 x}+2 e^{2 x} \left (-12 x+12 e^{10}+36 e^5+4 e+21\right )+2 \left (3+2 e^5\right ) e^x \left (12 x-4 e^{10}-12 e^5-4 e+3\right )-24 \left (3+2 e^5\right ) e^x-8 \left (3+2 e^5\right ) e^{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2187
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-6 \left (9+4 e+12 e^5+4 e^{10}\right ) x+36 x^2+16 \int e^{4 x} \, dx-\left (24 \left (3+2 e^5\right )\right ) \int e^{3 x} \, dx+\int e^{2 x} \left (84+16 e+144 e^5+48 e^{10}-48 x\right ) \, dx+\int e^x \left (18-24 e-72 e^{10}-16 e^{15}+72 x+e^5 (-60-16 e+48 x)\right ) \, dx\\ &=4 e^{4 x}-8 e^{3 x} \left (3+2 e^5\right )+2 e^{2 x} \left (21+4 e+36 e^5+12 e^{10}-12 x\right )-6 \left (9+4 e+12 e^5+4 e^{10}\right ) x+36 x^2+24 \int e^{2 x} \, dx+\int e^x \left (2 \left (3+2 e^5\right ) \left (3-4 e-12 e^5-4 e^{10}\right )+24 \left (3+2 e^5\right ) x\right ) \, dx\\ &=12 e^{2 x}+4 e^{4 x}-8 e^{3 x} \left (3+2 e^5\right )+2 e^{2 x} \left (21+4 e+36 e^5+12 e^{10}-12 x\right )-6 \left (9+4 e+12 e^5+4 e^{10}\right ) x+36 x^2+2 e^x \left (3+2 e^5\right ) \left (3-4 e-12 e^5-4 e^{10}+12 x\right )-\left (24 \left (3+2 e^5\right )\right ) \int e^x \, dx\\ &=12 e^{2 x}+4 e^{4 x}-24 e^x \left (3+2 e^5\right )-8 e^{3 x} \left (3+2 e^5\right )+2 e^{2 x} \left (21+4 e+36 e^5+12 e^{10}-12 x\right )-6 \left (9+4 e+12 e^5+4 e^{10}\right ) x+36 x^2+2 e^x \left (3+2 e^5\right ) \left (3-4 e-12 e^5-4 e^{10}+12 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 43, normalized size = 1.59 \begin {gather*} \frac {1}{4} \left (9+4 e+12 e^5+4 e^{10}-12 e^x+4 e^{2 x}-8 e^{5+x}-12 x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 99, normalized size = 3.67 \begin {gather*} 36 \, x^{2} - 24 \, x e^{10} - 72 \, x e^{5} - 24 \, x e - 8 \, {\left (2 \, e^{5} + 3\right )} e^{\left (3 \, x\right )} - 2 \, {\left (12 \, x - 12 \, e^{10} - 36 \, e^{5} - 4 \, e - 27\right )} e^{\left (2 \, x\right )} + 2 \, {\left (6 \, {\left (4 \, x - 9\right )} e^{5} + 36 \, x - 8 \, e^{15} - 36 \, e^{10} - 8 \, e^{6} - 12 \, e - 27\right )} e^{x} - 54 \, x + 4 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 121, normalized size = 4.48 \begin {gather*} 36 \, x^{2} - 24 \, x e^{10} - 72 \, x e^{5} - 24 \, x e - 8 \, {\left (2 \, e^{5} + 3\right )} e^{\left (3 \, x\right )} - 6 \, {\left (4 \, x - 9\right )} e^{\left (2 \, x\right )} + 12 \, {\left (4 \, x - 9\right )} e^{\left (x + 5\right )} + 18 \, {\left (4 \, x - 3\right )} e^{x} - 54 \, x + 4 \, e^{\left (4 \, x\right )} + 24 \, e^{\left (2 \, x + 10\right )} + 72 \, e^{\left (2 \, x + 5\right )} + 8 \, e^{\left (2 \, x + 1\right )} - 16 \, e^{\left (x + 15\right )} - 72 \, e^{\left (x + 10\right )} - 16 \, e^{\left (x + 6\right )} - 24 \, e^{\left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 100, normalized size = 3.70
method | result | size |
risch | \(4 \,{\mathrm e}^{4 x}-16 \,{\mathrm e}^{3 x} {\mathrm e}^{5}-24 \,{\mathrm e}^{3 x}+\left (24 \,{\mathrm e}^{10}+72 \,{\mathrm e}^{5}+8 \,{\mathrm e}-24 x +54\right ) {\mathrm e}^{2 x}+\left (-16 \,{\mathrm e}^{15}-72 \,{\mathrm e}^{10}-16 \,{\mathrm e}^{6}+48 x \,{\mathrm e}^{5}-108 \,{\mathrm e}^{5}-24 \,{\mathrm e}+72 x -54\right ) {\mathrm e}^{x}-24 x \,{\mathrm e}^{10}-72 x \,{\mathrm e}^{5}-24 x \,{\mathrm e}+36 x^{2}-54 x\) | \(100\) |
norman | \(\left (-16 \,{\mathrm e}^{5}-24\right ) {\mathrm e}^{3 x}+\left (54+24 \,{\mathrm e}^{10}+72 \,{\mathrm e}^{5}+8 \,{\mathrm e}\right ) {\mathrm e}^{2 x}+\left (-24 \,{\mathrm e}^{10}-72 \,{\mathrm e}^{5}-24 \,{\mathrm e}-54\right ) x +\left (-54-108 \,{\mathrm e}^{5}-16 \,{\mathrm e}^{15}-72 \,{\mathrm e}^{10}-16 \,{\mathrm e} \,{\mathrm e}^{5}-24 \,{\mathrm e}\right ) {\mathrm e}^{x}+\left (48 \,{\mathrm e}^{5}+72\right ) x \,{\mathrm e}^{x}+36 x^{2}+4 \,{\mathrm e}^{4 x}-24 x \,{\mathrm e}^{2 x}\) | \(111\) |
default | \(-54 x +\frac {\left (-48 \,{\mathrm e}^{5}-72\right ) {\mathrm e}^{3 x}}{3}+54 \,{\mathrm e}^{2 x}-24 x \,{\mathrm e}^{2 x}+8 \,{\mathrm e} \,{\mathrm e}^{2 x}+72 \,{\mathrm e}^{5} {\mathrm e}^{2 x}+24 \,{\mathrm e}^{10} {\mathrm e}^{2 x}+72 \,{\mathrm e}^{x} x -54 \,{\mathrm e}^{x}-24 \,{\mathrm e} \,{\mathrm e}^{x}-60 \,{\mathrm e}^{5} {\mathrm e}^{x}-72 \,{\mathrm e}^{10} {\mathrm e}^{x}-16 \,{\mathrm e}^{15} {\mathrm e}^{x}+48 \,{\mathrm e}^{5} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-16 \,{\mathrm e}^{5} {\mathrm e}^{x} {\mathrm e}+36 x^{2}-24 x \,{\mathrm e}^{10}+4 \,{\mathrm e}^{4 x}-24 x \,{\mathrm e}-72 x \,{\mathrm e}^{5}\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 100, normalized size = 3.70 \begin {gather*} 36 \, x^{2} - 24 \, x e^{10} - 72 \, x e^{5} - 24 \, x e - 8 \, {\left (2 \, e^{5} + 3\right )} e^{\left (3 \, x\right )} - 2 \, {\left (12 \, x - 12 \, e^{10} - 36 \, e^{5} - 4 \, e - 27\right )} e^{\left (2 \, x\right )} + 2 \, {\left (12 \, x {\left (2 \, e^{5} + 3\right )} - 8 \, e^{15} - 36 \, e^{10} - 8 \, e^{6} - 54 \, e^{5} - 12 \, e - 27\right )} e^{x} - 54 \, x + 4 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 103, normalized size = 3.81 \begin {gather*} 4\,{\mathrm {e}}^{4\,x}-24\,x\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{2\,x}\,\left (8\,\mathrm {e}+72\,{\mathrm {e}}^5+24\,{\mathrm {e}}^{10}+54\right )-{\mathrm {e}}^x\,\left (24\,\mathrm {e}+108\,{\mathrm {e}}^5+16\,{\mathrm {e}}^6+72\,{\mathrm {e}}^{10}+16\,{\mathrm {e}}^{15}+54\right )-x\,\left (24\,\mathrm {e}+72\,{\mathrm {e}}^5+24\,{\mathrm {e}}^{10}+54\right )-{\mathrm {e}}^{3\,x}\,\left (16\,{\mathrm {e}}^5+24\right )+36\,x^2+x\,{\mathrm {e}}^x\,\left (48\,{\mathrm {e}}^5+72\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 110, normalized size = 4.07 \begin {gather*} 36 x^{2} + x \left (- 24 e^{10} - 72 e^{5} - 24 e - 54\right ) + \left (- 24 x + 8 e + 54 + 72 e^{5} + 24 e^{10}\right ) e^{2 x} + \left (72 x + 48 x e^{5} - 16 e^{15} - 72 e^{10} - 108 e^{5} - 16 e^{6} - 24 e - 54\right ) e^{x} + 4 e^{4 x} + \left (- 16 e^{5} - 24\right ) e^{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________