Optimal. Leaf size=29 \[ \log (3) \left (-x^2+\frac {\left (-3+\frac {5}{x}\right ) x}{\log (\log ((4-x) x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (20-22 x+6 x^2\right ) \log (3)+\left (12 x-3 x^2\right ) \log (3) \log \left (4 x-x^2\right ) \log \left (\log \left (4 x-x^2\right )\right )+\left (8 x^2-2 x^3\right ) \log (3) \log \left (4 x-x^2\right ) \log ^2\left (\log \left (4 x-x^2\right )\right )}{\left (-4 x+x^2\right ) \log \left (4 x-x^2\right ) \log ^2\left (\log \left (4 x-x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (20-22 x+6 x^2\right ) \log (3)+\left (12 x-3 x^2\right ) \log (3) \log \left (4 x-x^2\right ) \log \left (\log \left (4 x-x^2\right )\right )+\left (8 x^2-2 x^3\right ) \log (3) \log \left (4 x-x^2\right ) \log ^2\left (\log \left (4 x-x^2\right )\right )}{(-4+x) x \log \left (4 x-x^2\right ) \log ^2\left (\log \left (4 x-x^2\right )\right )} \, dx\\ &=\int \frac {\log (3) \left (-20+22 x-6 x^2+(-4+x) x \log (-((-4+x) x)) \log (\log (-((-4+x) x))) (3+2 x \log (\log (-((-4+x) x))))\right )}{(4-x) x \log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx\\ &=\log (3) \int \frac {-20+22 x-6 x^2+(-4+x) x \log (-((-4+x) x)) \log (\log (-((-4+x) x))) (3+2 x \log (\log (-((-4+x) x))))}{(4-x) x \log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx\\ &=\log (3) \int \left (-2 x+\frac {2 \left (-10+11 x-3 x^2\right )}{(4-x) x \log ((4-x) x) \log ^2(\log ((4-x) x))}-\frac {3}{\log (\log ((4-x) x))}\right ) \, dx\\ &=-x^2 \log (3)+(2 \log (3)) \int \frac {-10+11 x-3 x^2}{(4-x) x \log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx-(3 \log (3)) \int \frac {1}{\log (\log ((4-x) x))} \, dx\\ &=-x^2 \log (3)+(2 \log (3)) \int \left (\frac {3}{\log ((4-x) x) \log ^2(\log ((4-x) x))}+\frac {7}{2 (-4+x) \log ((4-x) x) \log ^2(\log ((4-x) x))}-\frac {5}{2 x \log ((4-x) x) \log ^2(\log ((4-x) x))}\right ) \, dx-(3 \log (3)) \int \frac {1}{\log (\log ((4-x) x))} \, dx\\ &=-x^2 \log (3)-(3 \log (3)) \int \frac {1}{\log (\log ((4-x) x))} \, dx-(5 \log (3)) \int \frac {1}{x \log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx+(6 \log (3)) \int \frac {1}{\log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx+(7 \log (3)) \int \frac {1}{(-4+x) \log ((4-x) x) \log ^2(\log ((4-x) x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 25, normalized size = 0.86 \begin {gather*} \log (3) \left (-x^2+\frac {5-3 x}{\log (\log (-((-4+x) x)))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 41, normalized size = 1.41 \begin {gather*} -\frac {x^{2} \log \relax (3) \log \left (\log \left (-x^{2} + 4 \, x\right )\right ) + {\left (3 \, x - 5\right )} \log \relax (3)}{\log \left (\log \left (-x^{2} + 4 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.86, size = 33, normalized size = 1.14 \begin {gather*} -x^{2} \log \relax (3) - \frac {3 \, x \log \relax (3) - 5 \, \log \relax (3)}{\log \left (\log \left (-x^{2} + 4 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (-2 x^{3}+8 x^{2}\right ) \ln \relax (3) \ln \left (-x^{2}+4 x \right ) \ln \left (\ln \left (-x^{2}+4 x \right )\right )^{2}+\left (-3 x^{2}+12 x \right ) \ln \relax (3) \ln \left (-x^{2}+4 x \right ) \ln \left (\ln \left (-x^{2}+4 x \right )\right )+\left (6 x^{2}-22 x +20\right ) \ln \relax (3)}{\left (x^{2}-4 x \right ) \ln \left (-x^{2}+4 x \right ) \ln \left (\ln \left (-x^{2}+4 x \right )\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 40, normalized size = 1.38 \begin {gather*} -\frac {x^{2} \log \relax (3) \log \left (\log \relax (x) + \log \left (-x + 4\right )\right ) + 3 \, x \log \relax (3) - 5 \, \log \relax (3)}{\log \left (\log \relax (x) + \log \left (-x + 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 106, normalized size = 3.66 \begin {gather*} 6\,\ln \left (x\,\left (x-4\right )\right )\,\ln \relax (3)-x^2\,\ln \relax (3)+\frac {5\,\ln \relax (3)-3\,x\,\ln \relax (3)+\frac {3\,x\,\ln \left (\ln \left (4\,x-x^2\right )\right )\,\ln \relax (3)\,\ln \left (4\,x-x^2\right )\,\left (x-4\right )}{2\,\left (x-2\right )}}{\ln \left (\ln \left (4\,x-x^2\right )\right )}+\frac {\ln \left (4\,x-x^2\right )\,\left (12\,\ln \relax (3)-\frac {3\,x^2\,\ln \relax (3)}{2}\right )}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 27, normalized size = 0.93 \begin {gather*} - x^{2} \log {\relax (3 )} + \frac {- 3 x \log {\relax (3 )} + 5 \log {\relax (3 )}}{\log {\left (\log {\left (- x^{2} + 4 x \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________