Optimal. Leaf size=25 \[ \frac {e^{4/3} x^2}{5 \left (-1+x+\frac {1}{x-\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4/3} \left (-x+3 x^2-2 x^3+x^4\right )+e^{4/3} \left (-2 x+4 x^2-2 x^3\right ) \log (x)+e^{4/3} \left (-2 x+x^2\right ) \log ^2(x)}{5-10 x+15 x^2-10 x^3+5 x^4+\left (10-20 x+20 x^2-10 x^3\right ) \log (x)+\left (5-10 x+5 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4/3} x \left (-1+3 x-2 x^2+x^3-2 (-1+x)^2 \log (x)+(-2+x) \log ^2(x)\right )}{5 \left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx\\ &=\frac {1}{5} e^{4/3} \int \frac {x \left (-1+3 x-2 x^2+x^3-2 (-1+x)^2 \log (x)+(-2+x) \log ^2(x)\right )}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx\\ &=\frac {1}{5} e^{4/3} \int \left (\frac {(-2+x) x}{(-1+x)^2}+\frac {x \left (-1+2 x-3 x^2+x^3\right )}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )^2}+\frac {2 x}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{5} e^{4/3} \int \frac {(-2+x) x}{(-1+x)^2} \, dx+\frac {1}{5} e^{4/3} \int \frac {x \left (-1+2 x-3 x^2+x^3\right )}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx+\frac {1}{5} \left (2 e^{4/3}\right ) \int \frac {x}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )} \, dx\\ &=-\frac {e^{4/3} x^2}{5 (1-x)}+\frac {1}{5} e^{4/3} \int \left (-\frac {1}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2}-\frac {1}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )^2}-\frac {2}{(-1+x) \left (1-x+x^2+\log (x)-x \log (x)\right )^2}-\frac {x}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2}+\frac {x^2}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2}\right ) \, dx+\frac {1}{5} \left (2 e^{4/3}\right ) \int \left (\frac {1}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )}+\frac {1}{(-1+x) \left (1-x+x^2+\log (x)-x \log (x)\right )}\right ) \, dx\\ &=-\frac {e^{4/3} x^2}{5 (1-x)}-\frac {1}{5} e^{4/3} \int \frac {1}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx-\frac {1}{5} e^{4/3} \int \frac {1}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx-\frac {1}{5} e^{4/3} \int \frac {x}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx+\frac {1}{5} e^{4/3} \int \frac {x^2}{\left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx-\frac {1}{5} \left (2 e^{4/3}\right ) \int \frac {1}{(-1+x) \left (1-x+x^2+\log (x)-x \log (x)\right )^2} \, dx+\frac {1}{5} \left (2 e^{4/3}\right ) \int \frac {1}{(-1+x)^2 \left (1-x+x^2+\log (x)-x \log (x)\right )} \, dx+\frac {1}{5} \left (2 e^{4/3}\right ) \int \frac {1}{(-1+x) \left (1-x+x^2+\log (x)-x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 43, normalized size = 1.72 \begin {gather*} \frac {1}{5} e^{4/3} \left (\frac {1}{-1+x}+x+\frac {x^2}{(-1+x) \left (-1+x-x^2-\log (x)+x \log (x)\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 48, normalized size = 1.92 \begin {gather*} -\frac {{\left (x^{2} - x + 1\right )} e^{\frac {4}{3}} \log \relax (x) - {\left (x^{3} - x^{2} + x - 1\right )} e^{\frac {4}{3}}}{5 \, {\left (x^{2} - {\left (x - 1\right )} \log \relax (x) - x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 62, normalized size = 2.48 \begin {gather*} \frac {x^{3} e^{\frac {4}{3}} - x^{2} e^{\frac {4}{3}} \log \relax (x) - x^{2} e^{\frac {4}{3}} + x e^{\frac {4}{3}} \log \relax (x) + x e^{\frac {4}{3}} - e^{\frac {4}{3}} \log \relax (x) - e^{\frac {4}{3}}}{5 \, {\left (x^{2} - x \log \relax (x) - x + \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 40, normalized size = 1.60
method | result | size |
norman | \(\frac {\frac {{\mathrm e}^{\frac {4}{3}} x^{3}}{5}-\frac {{\mathrm e}^{\frac {4}{3}} x^{2} \ln \relax (x )}{5}}{x^{2}-x \ln \relax (x )-x +\ln \relax (x )+1}\) | \(40\) |
risch | \(\frac {{\mathrm e}^{\frac {4}{3}} \left (x^{2}-x +1\right )}{5 x -5}-\frac {{\mathrm e}^{\frac {4}{3}} x^{2}}{5 \left (x -1\right ) \left (x^{2}-x \ln \relax (x )-x +\ln \relax (x )+1\right )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 59, normalized size = 2.36 \begin {gather*} \frac {x^{3} e^{\frac {4}{3}} - x^{2} e^{\frac {4}{3}} + x e^{\frac {4}{3}} - {\left (x^{2} e^{\frac {4}{3}} - x e^{\frac {4}{3}} + e^{\frac {4}{3}}\right )} \log \relax (x) - e^{\frac {4}{3}}}{5 \, {\left (x^{2} - {\left (x - 1\right )} \log \relax (x) - x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 51, normalized size = 2.04 \begin {gather*} -\frac {{\mathrm {e}}^{4/3}\,\left (\ln \relax (x)-x+x^2\,\ln \relax (x)-x\,\ln \relax (x)+x^2-x^3+1\right )}{5\,\left (\ln \relax (x)-x-x\,\ln \relax (x)+x^2+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 54, normalized size = 2.16 \begin {gather*} \frac {x^{2} e^{\frac {4}{3}}}{- 5 x^{3} + 10 x^{2} - 10 x + \left (5 x^{2} - 10 x + 5\right ) \log {\relax (x )} + 5} + \frac {x e^{\frac {4}{3}}}{5} + \frac {e^{\frac {4}{3}}}{5 x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________