Optimal. Leaf size=28 \[ \frac {1}{5} e^{x \left (x-\frac {3}{x-5 x^2}\right )} x \left (e^{16}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-10 x+25 x^2+e^{16} \left (1-25 x+27 x^2-20 x^3+50 x^4\right )\right )+e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-25 x+27 x^2-20 x^3+50 x^4\right ) \log (x)}{5-50 x+125 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-10 x+25 x^2+e^{16} \left (1-25 x+27 x^2-20 x^3+50 x^4\right )\right )+e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-25 x+27 x^2-20 x^3+50 x^4\right ) \log (x)}{5 (-1+5 x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-10 x+25 x^2+e^{16} \left (1-25 x+27 x^2-20 x^3+50 x^4\right )\right )+e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1-25 x+27 x^2-20 x^3+50 x^4\right ) \log (x)}{(-1+5 x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1+e^{16}\right )}{(1-5 x)^2}-\frac {10 e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1+\frac {5 e^{16}}{2}\right ) x}{(1-5 x)^2}+\frac {25 e^{\frac {3-x^2+5 x^3}{-1+5 x}} \left (1+\frac {27 e^{16}}{25}\right ) x^2}{(1-5 x)^2}-\frac {20 e^{\frac {-13+80 x-x^2+5 x^3}{-1+5 x}} x^3}{(1-5 x)^2}+\frac {50 e^{\frac {-13+80 x-x^2+5 x^3}{-1+5 x}} x^4}{(1-5 x)^2}+\frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \log (x)}{(1-5 x)^2}-\frac {25 e^{\frac {3-x^2+5 x^3}{-1+5 x}} x \log (x)}{(1-5 x)^2}+\frac {27 e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^2 \log (x)}{(1-5 x)^2}-\frac {20 e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^3 \log (x)}{(1-5 x)^2}+\frac {50 e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^4 \log (x)}{(1-5 x)^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} \log (x)}{(1-5 x)^2} \, dx-4 \int \frac {e^{\frac {-13+80 x-x^2+5 x^3}{-1+5 x}} x^3}{(1-5 x)^2} \, dx-4 \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^3 \log (x)}{(1-5 x)^2} \, dx-5 \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x \log (x)}{(1-5 x)^2} \, dx+\frac {27}{5} \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^2 \log (x)}{(1-5 x)^2} \, dx+10 \int \frac {e^{\frac {-13+80 x-x^2+5 x^3}{-1+5 x}} x^4}{(1-5 x)^2} \, dx+10 \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^4 \log (x)}{(1-5 x)^2} \, dx+\left (-2-5 e^{16}\right ) \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x}{(1-5 x)^2} \, dx+\frac {1}{5} \left (1+e^{16}\right ) \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}}}{(1-5 x)^2} \, dx+\frac {1}{5} \left (25+27 e^{16}\right ) \int \frac {e^{\frac {3-x^2+5 x^3}{-1+5 x}} x^2}{(1-5 x)^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 0.93 \begin {gather*} \frac {1}{5} e^{x^2+\frac {3}{-1+5 x}} x \left (e^{16}+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 53, normalized size = 1.89 \begin {gather*} \frac {1}{5} \, x e^{\left (\frac {5 \, x^{3} - x^{2} + 3}{5 \, x - 1}\right )} \log \relax (x) + \frac {1}{5} \, x e^{\left (\frac {5 \, x^{3} - x^{2} + 3}{5 \, x - 1} + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.93, size = 59, normalized size = 2.11 \begin {gather*} \frac {1}{5} \, {\left (x e^{\left (\frac {5 \, x^{3} - x^{2} + 15 \, x}{5 \, x - 1}\right )} \log \relax (x) + x e^{\left (\frac {5 \, x^{3} - x^{2} + 15 \, x}{5 \, x - 1} + 16\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.22, size = 55, normalized size = 1.96
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{\frac {5 x^{3}-x^{2}+3}{5 x -1}} \ln \relax (x )}{5}+\frac {x \,{\mathrm e}^{\frac {5 x^{3}-x^{2}+80 x -13}{5 x -1}}}{5}\) | \(55\) |
norman | \(\frac {x^{2} {\mathrm e}^{16} {\mathrm e}^{\frac {5 x^{3}-x^{2}+3}{5 x -1}}+x^{2} {\mathrm e}^{\frac {5 x^{3}-x^{2}+3}{5 x -1}} \ln \relax (x )-\frac {x \,{\mathrm e}^{16} {\mathrm e}^{\frac {5 x^{3}-x^{2}+3}{5 x -1}}}{5}-\frac {x \,{\mathrm e}^{\frac {5 x^{3}-x^{2}+3}{5 x -1}} \ln \relax (x )}{5}}{5 x -1}\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 25, normalized size = 0.89 \begin {gather*} \frac {1}{5} \, {\left (x e^{16} + x \log \relax (x)\right )} e^{\left (x^{2} + \frac {3}{5 \, x - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {5\,x^3-x^2+3}{5\,x-1}}\,\left ({\mathrm {e}}^{16}\,\left (50\,x^4-20\,x^3+27\,x^2-25\,x+1\right )-10\,x+25\,x^2+1\right )+{\mathrm {e}}^{\frac {5\,x^3-x^2+3}{5\,x-1}}\,\ln \relax (x)\,\left (50\,x^4-20\,x^3+27\,x^2-25\,x+1\right )}{125\,x^2-50\,x+5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________