Optimal. Leaf size=29 \[ e^4 x-\log \left (\frac {25}{16}-e^{\frac {-7-x+x^2}{x}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25 e^4 x^2+e^{\frac {-7-x+x^2}{x}} \left (-112-16 x^2+16 e^4 x^2\right )}{-25 x^2+16 e^{\frac {-7-x+x^2}{x}} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {25 e^{1+\frac {7}{x}} \left (7+x^2\right )}{\left (25 e^{1+\frac {7}{x}}-16 e^x\right ) x^2}+\frac {-7-\left (1-e^4\right ) x^2}{x^2}\right ) \, dx\\ &=25 \int \frac {e^{1+\frac {7}{x}} \left (7+x^2\right )}{\left (25 e^{1+\frac {7}{x}}-16 e^x\right ) x^2} \, dx+\int \frac {-7-\left (1-e^4\right ) x^2}{x^2} \, dx\\ &=25 \int \left (-\frac {e^{1+\frac {7}{x}}}{-25 e^{1+\frac {7}{x}}+16 e^x}-\frac {7 e^{1+\frac {7}{x}}}{\left (-25 e^{1+\frac {7}{x}}+16 e^x\right ) x^2}\right ) \, dx+\int \left (-1+e^4-\frac {7}{x^2}\right ) \, dx\\ &=\frac {7}{x}-\left (1-e^4\right ) x-25 \int \frac {e^{1+\frac {7}{x}}}{-25 e^{1+\frac {7}{x}}+16 e^x} \, dx-175 \int \frac {e^{1+\frac {7}{x}}}{\left (-25 e^{1+\frac {7}{x}}+16 e^x\right ) x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 31, normalized size = 1.07 \begin {gather*} \frac {7}{x}+e^4 x-\log \left (-25 e^{1+\frac {7}{x}}+16 e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 25, normalized size = 0.86 \begin {gather*} x e^{4} - \log \left (16 \, e^{\left (\frac {x^{2} - x - 7}{x}\right )} - 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 25, normalized size = 0.86 \begin {gather*} x e^{4} - \log \left (16 \, e^{\left (\frac {x^{2} - x - 7}{x}\right )} - 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 0.90
method | result | size |
norman | \(x \,{\mathrm e}^{4}-\ln \left (16 \,{\mathrm e}^{\frac {x^{2}-x -7}{x}}-25\right )\) | \(26\) |
risch | \(x \,{\mathrm e}^{4}-x +\frac {7}{x}+\frac {x^{2}-x -7}{x}-\ln \left ({\mathrm e}^{\frac {x^{2}-x -7}{x}}-\frac {25}{16}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 35, normalized size = 1.21 \begin {gather*} \frac {x^{2} e^{4} + 7}{x} - \log \left (-\frac {1}{25} \, {\left (16 \, e^{x} - 25 \, e^{\left (\frac {7}{x} + 1\right )}\right )} e^{\left (-1\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.97, size = 22, normalized size = 0.76 \begin {gather*} x\,{\mathrm {e}}^4-\ln \left (16\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{-\frac {7}{x}}\,{\mathrm {e}}^x-25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.66 \begin {gather*} x e^{4} - \log {\left (e^{\frac {x^{2} - x - 7}{x}} - \frac {25}{16} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________