Optimal. Leaf size=22 \[ \frac {-1-x+\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 5.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-10 x \log (x)+e^{e^x} \left (1+e^x x\right ) \log (x)+\log (x) \log (\log (x))+\left (-e^{e^x} \log (x)+5 x \log (x)-\log (x) \log (\log (x))\right ) \log \left (e^{e^x}-5 x+\log (\log (x))\right )}{e^{e^x} x^2 \log (x)-5 x^3 \log (x)+x^2 \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-10 x \log (x)+e^{e^x} \left (1+e^x x\right ) \log (x)+\log (x) \log (\log (x))+\left (-e^{e^x} \log (x)+5 x \log (x)-\log (x) \log (\log (x))\right ) \log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2 \log (x) \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx\\ &=\int \left (\frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )}-\frac {1+e^{e^x} \log (x)-10 x \log (x)+\log (x) \log (\log (x))-e^{e^x} \log (x) \log \left (e^{e^x}-5 x+\log (\log (x))\right )+5 x \log (x) \log \left (e^{e^x}-5 x+\log (\log (x))\right )-\log (x) \log (\log (x)) \log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )}\right ) \, dx\\ &=\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \frac {1+e^{e^x} \log (x)-10 x \log (x)+\log (x) \log (\log (x))-e^{e^x} \log (x) \log \left (e^{e^x}-5 x+\log (\log (x))\right )+5 x \log (x) \log \left (e^{e^x}-5 x+\log (\log (x))\right )-\log (x) \log (\log (x)) \log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )} \, dx\\ &=\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \frac {-1-\log (x) \left (e^{e^x}-10 x-\log (\log (x)) \left (-1+\log \left (e^{e^x}-5 x+\log (\log (x))\right )\right )-\left (e^{e^x}-5 x\right ) \log \left (e^{e^x}-5 x+\log (\log (x))\right )\right )}{x^2 \log (x) \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx\\ &=\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \left (-\frac {-1+5 x \log (x)}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )}+\frac {-1+\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2}\right ) \, dx\\ &=\int \frac {-1+5 x \log (x)}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )} \, dx+\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \frac {-1+\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2} \, dx\\ &=\int \left (\frac {5}{x \left (-e^{e^x}+5 x-\log (\log (x))\right )}-\frac {1}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )}\right ) \, dx+\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \left (-\frac {1}{x^2}+\frac {\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2}\right ) \, dx\\ &=-\frac {1}{x}+5 \int \frac {1}{x \left (-e^{e^x}+5 x-\log (\log (x))\right )} \, dx-\int \frac {1}{x^2 \log (x) \left (-e^{e^x}+5 x-\log (\log (x))\right )} \, dx+\int \frac {e^{e^x+x}}{x \left (e^{e^x}-5 x+\log (\log (x))\right )} \, dx-\int \frac {\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 23, normalized size = 1.05 \begin {gather*} -\frac {1}{x}+\frac {\log \left (e^{e^x}-5 x+\log (\log (x))\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 17, normalized size = 0.77 \begin {gather*} \frac {\log \left (-5 \, x + e^{\left (e^{x}\right )} + \log \left (\log \relax (x)\right )\right ) - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.83, size = 33, normalized size = 1.50 \begin {gather*} \frac {\log \left (-{\left (5 \, x e^{x} - e^{x} \log \left (\log \relax (x)\right ) - e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right ) - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.00
method | result | size |
risch | \(\frac {\ln \left (\ln \left (\ln \relax (x )\right )+{\mathrm e}^{{\mathrm e}^{x}}-5 x \right )}{x}-\frac {1}{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 17, normalized size = 0.77 \begin {gather*} \frac {\log \left (-5 \, x + e^{\left (e^{x}\right )} + \log \left (\log \relax (x)\right )\right ) - 1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 17, normalized size = 0.77 \begin {gather*} \frac {\ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}-5\,x+\ln \left (\ln \relax (x)\right )\right )-1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________