Optimal. Leaf size=32 \[ \frac {3 \left (5-\frac {x+\log \left (e^x x^2\right )}{1-e^x-\log (x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 4.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-21-15 e^{2 x}-6 x+e^x \left (36+3 x-3 x^2\right )+\left (36-30 e^x+3 x\right ) \log (x)-15 \log ^2(x)+\left (e^x (-3-3 x)-3 \log (x)\right ) \log \left (e^x x^2\right )}{x^2-2 e^x x^2+e^{2 x} x^2+\left (-2 x^2+2 e^x x^2\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-21-15 e^{2 x}-6 x+e^x \left (36+3 x-3 x^2\right )+\left (36-30 e^x+3 x\right ) \log (x)-15 \log ^2(x)+\left (e^x (-3-3 x)-3 \log (x)\right ) \log \left (e^x x^2\right )}{x^2 \left (1-e^x-\log (x)\right )^2} \, dx\\ &=\int \left (-\frac {15}{x^2}-\frac {3 (1+x) \left (-2+x+\log \left (e^x x^2\right )\right )}{x^2 \left (-1+e^x+\log (x)\right )}+\frac {3 (-1-x+x \log (x)) \left (x+\log \left (e^x x^2\right )\right )}{x^2 \left (-1+e^x+\log (x)\right )^2}\right ) \, dx\\ &=\frac {15}{x}-3 \int \frac {(1+x) \left (-2+x+\log \left (e^x x^2\right )\right )}{x^2 \left (-1+e^x+\log (x)\right )} \, dx+3 \int \frac {(-1-x+x \log (x)) \left (x+\log \left (e^x x^2\right )\right )}{x^2 \left (-1+e^x+\log (x)\right )^2} \, dx\\ &=\frac {15}{x}+3 \int \left (-\frac {1}{\left (-1+e^x+\log (x)\right )^2}-\frac {1}{x \left (-1+e^x+\log (x)\right )^2}+\frac {\log (x)}{\left (-1+e^x+\log (x)\right )^2}-\frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )^2}-\frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2}+\frac {\log (x) \log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2}\right ) \, dx-3 \int \left (\frac {-2+x+\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )}+\frac {-2+x+\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )}\right ) \, dx\\ &=\frac {15}{x}-3 \int \frac {1}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {1}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x)}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x) \log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {-2+x+\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )} \, dx-3 \int \frac {-2+x+\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )} \, dx\\ &=\frac {15}{x}-3 \int \frac {1}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {1}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x)}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x) \log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \left (-\frac {2}{x^2 \left (-1+e^x+\log (x)\right )}+\frac {1}{x \left (-1+e^x+\log (x)\right )}+\frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )}\right ) \, dx-3 \int \left (\frac {1}{-1+e^x+\log (x)}-\frac {2}{x \left (-1+e^x+\log (x)\right )}+\frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )}\right ) \, dx\\ &=\frac {15}{x}-3 \int \frac {1}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {1}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x)}{\left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {1}{-1+e^x+\log (x)} \, dx-3 \int \frac {1}{x \left (-1+e^x+\log (x)\right )} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx+3 \int \frac {\log (x) \log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )^2} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x^2 \left (-1+e^x+\log (x)\right )} \, dx-3 \int \frac {\log \left (e^x x^2\right )}{x \left (-1+e^x+\log (x)\right )} \, dx+6 \int \frac {1}{x^2 \left (-1+e^x+\log (x)\right )} \, dx+6 \int \frac {1}{x \left (-1+e^x+\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 34, normalized size = 1.06 \begin {gather*} \frac {3 \left (-5+5 e^x+x+5 \log (x)+\log \left (e^x x^2\right )\right )}{x \left (-1+e^x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.21, size = 29, normalized size = 0.91 \begin {gather*} \frac {3 \, {\left (2 \, x + 5 \, e^{x} + 7 \, \log \relax (x) - 5\right )}}{x e^{x} + x \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.77, size = 29, normalized size = 0.91 \begin {gather*} \frac {3 \, {\left (2 \, x + 5 \, e^{x} + 7 \, \log \relax (x) - 5\right )}}{x e^{x} + x \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 177, normalized size = 5.53
method | result | size |
risch | \(\frac {3 \ln \left ({\mathrm e}^{x}\right )}{x \left (-1+\ln \relax (x )+{\mathrm e}^{x}\right )}+\frac {-\frac {3 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}+3 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-\frac {3 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-\frac {3 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{x}\right )}{2}+\frac {3 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{x}\right )^{2}}{2}+\frac {3 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{x}\right )^{2}}{2}-\frac {3 i \pi \mathrm {csgn}\left (i x^{2} {\mathrm e}^{x}\right )^{3}}{2}+3 x +15 \,{\mathrm e}^{x}+21 \ln \relax (x )-15}{x \left (-1+\ln \relax (x )+{\mathrm e}^{x}\right )}\) | \(177\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 29, normalized size = 0.91 \begin {gather*} \frac {3 \, {\left (2 \, x + 5 \, e^{x} + 7 \, \log \relax (x) - 5\right )}}{x e^{x} + x \log \relax (x) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.25, size = 30, normalized size = 0.94 \begin {gather*} \frac {3\,\left (2\,x+\ln \left (x^2\right )+5\,{\mathrm {e}}^x+5\,\ln \relax (x)-5\right )}{x\,\left ({\mathrm {e}}^x+\ln \relax (x)-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 0.69 \begin {gather*} \frac {6 x + 6 \log {\relax (x )}}{x e^{x} + x \log {\relax (x )} - x} + \frac {15}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________