Optimal. Leaf size=18 \[ -\frac {1}{4}+\frac {\log \left (\left (-x+x^3\right )^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {1593, 6725, 453, 207, 2525, 206} \begin {gather*} \frac {\log \left (x^2 \left (1-x^2\right )^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 207
Rule 453
Rule 1593
Rule 2525
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+6 x^2+\left (1-x^2\right ) \log \left (x^2-2 x^4+x^6\right )}{x^2 \left (-1+x^2\right )} \, dx\\ &=\int \left (\frac {2 \left (-1+3 x^2\right )}{x^2 \left (-1+x^2\right )}-\frac {\log \left (x^2 \left (-1+x^2\right )^2\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {-1+3 x^2}{x^2 \left (-1+x^2\right )} \, dx-\int \frac {\log \left (x^2 \left (-1+x^2\right )^2\right )}{x^2} \, dx\\ &=-\frac {2}{x}+\frac {\log \left (x^2 \left (1-x^2\right )^2\right )}{x}+4 \int \frac {1}{-1+x^2} \, dx-\int \frac {2-6 x^2}{x^2 \left (1-x^2\right )} \, dx\\ &=-4 \tanh ^{-1}(x)+\frac {\log \left (x^2 \left (1-x^2\right )^2\right )}{x}+4 \int \frac {1}{1-x^2} \, dx\\ &=\frac {\log \left (x^2 \left (1-x^2\right )^2\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 0.89 \begin {gather*} \frac {\log \left (x^2 \left (-1+x^2\right )^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 17, normalized size = 0.94 \begin {gather*} \frac {\log \left (x^{6} - 2 \, x^{4} + x^{2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 17, normalized size = 0.94 \begin {gather*} \frac {\log \left (x^{6} - 2 \, x^{4} + x^{2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 18, normalized size = 1.00
method | result | size |
default | \(\frac {\ln \left (x^{6}-2 x^{4}+x^{2}\right )}{x}\) | \(18\) |
norman | \(\frac {\ln \left (x^{6}-2 x^{4}+x^{2}\right )}{x}\) | \(18\) |
risch | \(\frac {\ln \left (x^{6}-2 x^{4}+x^{2}\right )}{x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 44, normalized size = 2.44 \begin {gather*} \frac {2 \, {\left ({\left (x + 1\right )} \log \left (x + 1\right ) - {\left (x - 1\right )} \log \left (x - 1\right ) + \log \relax (x) + 1\right )}}{x} - \frac {2}{x} - 2 \, \log \left (x + 1\right ) + 2 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 16, normalized size = 0.89 \begin {gather*} \frac {\ln \left (x^2\,{\left (x^2-1\right )}^2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.78 \begin {gather*} \frac {\log {\left (x^{6} - 2 x^{4} + x^{2} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________