Optimal. Leaf size=23 \[ x-x \left (-5+x-\frac {1}{3} x \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 8, number of rules used = 5, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 6688, 2310, 2178, 2522} \begin {gather*} -x^2+\frac {1}{3} x^2 \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )+6 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2310
Rule 2522
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {4 x+(18-6 x) \log \left (\frac {x^4}{\log ^2(3)}\right )+2 x \log \left (\frac {x^4}{\log ^2(3)}\right ) \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )}{\log \left (\frac {x^4}{\log ^2(3)}\right )} \, dx\\ &=\frac {1}{3} \int \left (18-6 x+\frac {4 x}{\log \left (\frac {x^4}{\log ^2(3)}\right )}+2 x \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )\right ) \, dx\\ &=6 x-x^2+\frac {2}{3} \int x \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right ) \, dx+\frac {4}{3} \int \frac {x}{\log \left (\frac {x^4}{\log ^2(3)}\right )} \, dx\\ &=6 x-x^2+\frac {1}{3} x^2 \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )-\frac {4}{3} \int \frac {x}{\log \left (\frac {x^4}{\log ^2(3)}\right )} \, dx+\frac {\left (x^2 \log (3)\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (\frac {x^4}{\log ^2(3)}\right )\right )}{3 \sqrt {x^4}}\\ &=6 x-x^2+\frac {x^2 \text {Ei}\left (\frac {1}{2} \log \left (\frac {x^4}{\log ^2(3)}\right )\right ) \log (3)}{3 \sqrt {x^4}}+\frac {1}{3} x^2 \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )-\frac {\left (x^2 \log (3)\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (\frac {x^4}{\log ^2(3)}\right )\right )}{3 \sqrt {x^4}}\\ &=6 x-x^2+\frac {1}{3} x^2 \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 1.13 \begin {gather*} 6 x-x^2+\frac {1}{3} x^2 \log \left (\log \left (\frac {x^4}{\log ^2(3)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 24, normalized size = 1.04 \begin {gather*} \frac {1}{3} \, x^{2} \log \left (\log \left (\frac {x^{4}}{\log \relax (3)^{2}}\right )\right ) - x^{2} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 25, normalized size = 1.09 \begin {gather*} \frac {1}{3} \, x^{2} \log \left (\log \left (x^{4}\right ) - 2 \, \log \left (\log \relax (3)\right )\right ) - x^{2} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 1.09
method | result | size |
norman | \(6 x -x^{2}+\frac {x^{2} \ln \left (\ln \left (\frac {x^{4}}{\ln \relax (3)^{2}}\right )\right )}{3}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 32, normalized size = 1.39 \begin {gather*} \frac {1}{3} \, x^{2} \log \relax (2) + \frac {1}{3} \, x^{2} \log \left (2 \, \log \relax (x) - \log \left (\log \relax (3)\right )\right ) - x^{2} + 6 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.06, size = 25, normalized size = 1.09 \begin {gather*} 6\,x+\frac {x^2\,\ln \left (\ln \left (x^4\right )-2\,\ln \left (\ln \relax (3)\right )\right )}{3}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.96 \begin {gather*} \frac {x^{2} \log {\left (\log {\left (\frac {x^{4}}{\log {\relax (3 )}^{2}} \right )} \right )}}{3} - x^{2} + 6 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________