Optimal. Leaf size=21 \[ -x+\frac {x}{e^4}-4 x^2-(5+x)^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 0.81, number of steps used = 2, number of rules used = 1, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12} \begin {gather*} \frac {x}{e^4}-\frac {1}{20} (10 x+11)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (1+e^4 (-11-10 x)\right ) \, dx}{e^4}\\ &=\frac {x}{e^4}-\frac {1}{20} (11+10 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 14, normalized size = 0.67 \begin {gather*} -11 x+\frac {x}{e^4}-5 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 20, normalized size = 0.95 \begin {gather*} -{\left ({\left (5 \, x^{2} + 11 \, x\right )} e^{4} - x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 20, normalized size = 0.95 \begin {gather*} -{\left ({\left (5 \, x^{2} + 11 \, x\right )} e^{4} - x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.67
method | result | size |
risch | \(-5 x^{2}-11 x +x \,{\mathrm e}^{-4}\) | \(14\) |
gosper | \(-x \left (5 x \,{\mathrm e}^{4}+11 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-4}\) | \(19\) |
default | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \left (-5 x^{2}-11 x \right )+x \right )\) | \(20\) |
norman | \(-5 x^{2}-{\mathrm e}^{-4} \left (11 \,{\mathrm e}^{4}-1\right ) x\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 20, normalized size = 0.95 \begin {gather*} -{\left ({\left (5 \, x^{2} + 11 \, x\right )} e^{4} - x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 16, normalized size = 0.76 \begin {gather*} -\frac {{\mathrm {e}}^{-8}\,{\left ({\mathrm {e}}^4\,\left (10\,x+11\right )-1\right )}^2}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 15, normalized size = 0.71 \begin {gather*} - 5 x^{2} + \frac {x \left (1 - 11 e^{4}\right )}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________