Optimal. Leaf size=27 \[ e^{(3-x-\log (3+x)) \left (5-\log \left (2+\frac {\log (x)}{4}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 31.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) \left (-9-160 x-39 x^2+\left (-20 x-5 x^2\right ) \log (x)+(3+x) \log (3+x)+\left (32 x+8 x^2+\left (4 x+x^2\right ) \log (x)\right ) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{(3+x)^5 \left (24 x+8 x^2+\left (3 x+x^2\right ) \log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) \left (-9-160 x-39 x^2+\left (-20 x-5 x^2\right ) \log (x)+(3+x) \log (3+x)+\left (32 x+8 x^2+\left (4 x+x^2\right ) \log (x)\right ) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{x (3+x)^6 (8+\log (x))} \, dx\\ &=\int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) \left (-9-160 x-39 x^2-5 x (4+x) \log (x)+(3+x) \log (3+x)+x (4+x) (8+\log (x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{x (3+x)^6 (8+\log (x))} \, dx\\ &=\int \left (-\frac {160 \exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{(3+x)^6 (8+\log (x))}-\frac {9 \exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{x (3+x)^6 (8+\log (x))}-\frac {39 \exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) x}{(3+x)^6 (8+\log (x))}-\frac {5 \exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) (4+x) \log (x)}{(3+x)^6 (8+\log (x))}+\frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) \log (3+x)}{x (3+x)^5 (8+\log (x))}+\frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) (4+x) \log \left (\frac {1}{4} (8+\log (x))\right )}{(3+x)^6}\right ) \, dx\\ &=-\left (5 \int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) (4+x) \log (x)}{(3+x)^6 (8+\log (x))} \, dx\right )-9 \int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{x (3+x)^6 (8+\log (x))} \, dx-39 \int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) x}{(3+x)^6 (8+\log (x))} \, dx-160 \int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{(3+x)^6 (8+\log (x))} \, dx+\int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) \log (3+x)}{x (3+x)^5 (8+\log (x))} \, dx+\int \frac {\exp \left (15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )\right ) (4+x) \log \left (\frac {1}{4} (8+\log (x))\right )}{(3+x)^6} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.51, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{15-5 x+(-3+x+\log (3+x)) \log \left (\frac {1}{4} (8+\log (x))\right )} \left (-9-160 x-39 x^2+\left (-20 x-5 x^2\right ) \log (x)+(3+x) \log (3+x)+\left (32 x+8 x^2+\left (4 x+x^2\right ) \log (x)\right ) \log \left (\frac {1}{4} (8+\log (x))\right )\right )}{(3+x)^5 \left (24 x+8 x^2+\left (3 x+x^2\right ) \log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 27, normalized size = 1.00 \begin {gather*} e^{\left ({\left (x + \log \left (x + 3\right ) - 3\right )} \log \left (\frac {1}{4} \, \log \relax (x) + 2\right ) - 5 \, x - 5 \, \log \left (x + 3\right ) + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.97, size = 42, normalized size = 1.56 \begin {gather*} e^{\left (x \log \left (\frac {1}{4} \, \log \relax (x) + 2\right ) + \log \left (x + 3\right ) \log \left (\frac {1}{4} \, \log \relax (x) + 2\right ) - 5 \, x - 5 \, \log \left (x + 3\right ) - 3 \, \log \left (\frac {1}{4} \, \log \relax (x) + 2\right ) + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.00
method | result | size |
risch | \(\frac {\left (\frac {\ln \relax (x )}{4}+2\right )^{\ln \left (3+x \right )+x -3} {\mathrm e}^{15-5 x}}{\left (3+x \right )^{5}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.79, size = 149, normalized size = 5.52 \begin {gather*} \frac {64 \, e^{\left (-2 \, x \log \relax (2) - 2 \, \log \relax (2) \log \left (x + 3\right ) + x \log \left (\log \relax (x) + 8\right ) + \log \left (x + 3\right ) \log \left (\log \relax (x) + 8\right ) - 5 \, x + 15\right )}}{512 \, x^{5} + 7680 \, x^{4} + {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 270 \, x^{2} + 405 \, x + 243\right )} \log \relax (x)^{3} + 46080 \, x^{3} + 24 \, {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 270 \, x^{2} + 405 \, x + 243\right )} \log \relax (x)^{2} + 138240 \, x^{2} + 192 \, {\left (x^{5} + 15 \, x^{4} + 90 \, x^{3} + 270 \, x^{2} + 405 \, x + 243\right )} \log \relax (x) + 207360 \, x + 124416} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 182, normalized size = 6.74 \begin {gather*} \frac {64\,{\mathrm {e}}^{15-5\,x}\,{\left (\frac {\ln \relax (x)}{4}+2\right )}^{x+\ln \left (x+3\right )}}{x^5\,{\ln \relax (x)}^3+24\,x^5\,{\ln \relax (x)}^2+192\,x^5\,\ln \relax (x)+512\,x^5+15\,x^4\,{\ln \relax (x)}^3+360\,x^4\,{\ln \relax (x)}^2+2880\,x^4\,\ln \relax (x)+7680\,x^4+90\,x^3\,{\ln \relax (x)}^3+2160\,x^3\,{\ln \relax (x)}^2+17280\,x^3\,\ln \relax (x)+46080\,x^3+270\,x^2\,{\ln \relax (x)}^3+6480\,x^2\,{\ln \relax (x)}^2+51840\,x^2\,\ln \relax (x)+138240\,x^2+405\,x\,{\ln \relax (x)}^3+9720\,x\,{\ln \relax (x)}^2+77760\,x\,\ln \relax (x)+207360\,x+243\,{\ln \relax (x)}^3+5832\,{\ln \relax (x)}^2+46656\,\ln \relax (x)+124416} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.93, size = 46, normalized size = 1.70 \begin {gather*} \frac {e^{- 5 x + \left (x + \log {\left (x + 3 \right )} - 3\right ) \log {\left (\frac {\log {\relax (x )}}{4} + 2 \right )} + 15}}{x^{5} + 15 x^{4} + 90 x^{3} + 270 x^{2} + 405 x + 243} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________