Optimal. Leaf size=32 \[ x \left (x-\frac {\left (2+x+\log (x)-\log \left (\frac {x^2}{x-x \log (5)}\right )\right )^2}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 75, normalized size of antiderivative = 2.34, number of steps used = 13, number of rules used = 4, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {14, 2304, 2305, 2366} \begin {gather*} x^2-x-\frac {10}{x}-\frac {\log ^2(x)}{x}-\frac {\log ^2\left (\frac {x}{1-\log (5)}\right )}{x}-\frac {6 \log (x)}{x}+\frac {2 (\log (x)+3)}{x}+\frac {2 (\log (x)+2) \log \left (\frac {x}{1-\log (5)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rule 2305
Rule 2366
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4-x^2+2 x^3+4 \log (x)+\log ^2(x)}{x^2}-\frac {2 (2+\log (x)) \log \left (-\frac {x}{-1+\log (5)}\right )}{x^2}+\frac {\log ^2\left (-\frac {x}{-1+\log (5)}\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {(2+\log (x)) \log \left (-\frac {x}{-1+\log (5)}\right )}{x^2} \, dx\right )+\int \frac {4-x^2+2 x^3+4 \log (x)+\log ^2(x)}{x^2} \, dx+\int \frac {\log ^2\left (-\frac {x}{-1+\log (5)}\right )}{x^2} \, dx\\ &=\frac {2 \log \left (\frac {x}{1-\log (5)}\right )}{x}+\frac {2 (2+\log (x)) \log \left (\frac {x}{1-\log (5)}\right )}{x}-\frac {\log ^2\left (\frac {x}{1-\log (5)}\right )}{x}+2 \int \frac {-3-\log (x)}{x^2} \, dx+2 \int \frac {\log \left (-\frac {x}{-1+\log (5)}\right )}{x^2} \, dx+\int \left (\frac {4-x^2+2 x^3}{x^2}+\frac {4 \log (x)}{x^2}+\frac {\log ^2(x)}{x^2}\right ) \, dx\\ &=\frac {2 (3+\log (x))}{x}+\frac {2 (2+\log (x)) \log \left (\frac {x}{1-\log (5)}\right )}{x}-\frac {\log ^2\left (\frac {x}{1-\log (5)}\right )}{x}+4 \int \frac {\log (x)}{x^2} \, dx+\int \frac {4-x^2+2 x^3}{x^2} \, dx+\int \frac {\log ^2(x)}{x^2} \, dx\\ &=-\frac {4}{x}-\frac {4 \log (x)}{x}-\frac {\log ^2(x)}{x}+\frac {2 (3+\log (x))}{x}+\frac {2 (2+\log (x)) \log \left (\frac {x}{1-\log (5)}\right )}{x}-\frac {\log ^2\left (\frac {x}{1-\log (5)}\right )}{x}+2 \int \frac {\log (x)}{x^2} \, dx+\int \left (-1+\frac {4}{x^2}+2 x\right ) \, dx\\ &=-\frac {10}{x}-x+x^2-\frac {6 \log (x)}{x}-\frac {\log ^2(x)}{x}+\frac {2 (3+\log (x))}{x}+\frac {2 (2+\log (x)) \log \left (\frac {x}{1-\log (5)}\right )}{x}-\frac {\log ^2\left (\frac {x}{1-\log (5)}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 59, normalized size = 1.84 \begin {gather*} -\frac {4+x^2-x^3+\log ^2(x)-2 \log (x) \left (-2+\log \left (-\frac {x}{-1+\log (5)}\right )\right )-4 \log \left (-\frac {x}{-1+\log (5)}\right )+\log ^2\left (-\frac {x}{-1+\log (5)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 33, normalized size = 1.03 \begin {gather*} \frac {x^{3} + \pi ^{2} - x^{2} - \log \left (\log \relax (5) - 1\right )^{2} - 4 \, \log \left (\log \relax (5) - 1\right ) - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.38, size = 44, normalized size = 1.38 \begin {gather*} x^{2} - x - \frac {-4 i \, \pi - \pi ^{2} - 2 i \, \pi \log \left (\log \relax (5) - 1\right ) + \log \left (\log \relax (5) - 1\right )^{2} + 4 \, \log \left (\log \relax (5) - 1\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 123, normalized size = 3.84
method | result | size |
default | \(-\frac {\ln \left (-x \right )^{2}}{x}+\frac {2 \ln \left (-x \right )}{x}-\frac {4}{x}-\frac {\ln \left (\ln \relax (5)-1\right )^{2}}{x}+\frac {2 \ln \left (\ln \relax (5)-1\right ) \ln \left (-x \right )}{x}-\frac {2 \ln \left (\ln \relax (5)-1\right )}{x}+\frac {\left (-2-2 \ln \left (\ln \relax (5)-1\right )\right ) \ln \relax (x )+2 \ln \relax (x ) \ln \left (-x \right )+2 \ln \left (-x \right )-2 \ln \left (\ln \relax (5)-1\right )}{x}+x^{2}-x -\frac {\ln \relax (x )^{2}}{x}-\frac {2 \ln \relax (x )}{x}\) | \(123\) |
risch | \(x^{2}-x +\frac {-4+\pi ^{2}+4 i \pi +2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3}-\ln \left (\ln \relax (5)-1\right )^{2}+2 i \ln \left (\ln \relax (5)-1\right ) \pi \mathrm {csgn}\left (i x \right )^{3}-2 i \ln \left (\ln \relax (5)-1\right ) \pi \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \ln \left (\ln \relax (5)-1\right )-4 \ln \left (\ln \relax (5)-1\right )+\pi ^{2} \mathrm {csgn}\left (i x \right )^{6}+4 i \pi \mathrm {csgn}\left (i x \right )^{3}-4 i \pi \mathrm {csgn}\left (i x \right )^{2}-2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2}+\pi ^{2} \mathrm {csgn}\left (i x \right )^{4}-2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{5}}{x}\) | \(158\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 120, normalized size = 3.75 \begin {gather*} x^{2} + 2 \, {\left (\frac {\log \left (-\frac {x}{\log \relax (5) - 1}\right )}{x} + \frac {1}{x}\right )} \log \relax (x) - x - \frac {\log \relax (x)^{2} + 2 \, \log \relax (x) + 2}{x} - \frac {\log \left (-\frac {x}{\log \relax (5) - 1}\right )^{2} + 2 \, \log \left (-\frac {x}{\log \relax (5) - 1}\right ) + 2}{x} + \frac {2 \, {\left (\log \relax (x) - \log \left (-\log \relax (5) + 1\right ) + 2\right )}}{x} - \frac {4 \, \log \relax (x)}{x} + \frac {4 \, \log \left (-\frac {x}{\log \relax (5) - 1}\right )}{x} - \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 28, normalized size = 0.88 \begin {gather*} x\,\left (x-1\right )-\frac {{\left (\ln \left (\ln \relax (5)-1\right )-\ln \left (-x\right )+\ln \relax (x)+2\right )}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.32, size = 44, normalized size = 1.38 \begin {gather*} x^{2} - x + \frac {-4 - \log {\left (-1 + \log {\relax (5 )} \right )}^{2} - 4 \log {\left (-1 + \log {\relax (5 )} \right )} + \pi ^{2} + 2 i \pi \log {\left (-1 + \log {\relax (5 )} \right )} + 4 i \pi }{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________