Optimal. Leaf size=31 \[ e^{3+\frac {3-x}{\log \left (-\frac {3}{2}+\frac {1}{3} \left (2-\frac {10}{x}-x\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 13.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) \left (60-20 x-6 x^2+2 x^3+\left (-20 x-5 x^2-2 x^3\right ) \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )\right )}{\left (20 x+5 x^2+2 x^3\right ) \log ^2\left (\frac {-20-5 x-2 x^2}{6 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) \left (60-20 x-6 x^2+2 x^3+\left (-20 x-5 x^2-2 x^3\right ) \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )\right )}{x \left (20+5 x+2 x^2\right ) \log ^2\left (\frac {-20-5 x-2 x^2}{6 x}\right )} \, dx\\ &=\int \left (\frac {2 \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) \left (30-10 x-3 x^2+x^3\right )}{x \left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}-\frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) \left (30-10 x-3 x^2+x^3\right )}{x \left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=2 \int \left (\frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{2 \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}+\frac {3 \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{2 x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}+\frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) (-55-17 x)}{2 \left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}\right ) \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=3 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) (-55-17 x)}{\left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=3 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx+\int \left (-\frac {55 \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}-\frac {17 \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) x}{\left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}\right ) \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=3 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-17 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right ) x}{\left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-55 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (20+5 x+2 x^2\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=3 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-17 \int \left (\frac {\left (1+\frac {1}{3} i \sqrt {\frac {5}{3}}\right ) \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (5-3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}+\frac {\left (1-\frac {1}{3} i \sqrt {\frac {5}{3}}\right ) \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (5+3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}\right ) \, dx-55 \int \left (\frac {4 i \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{3 \sqrt {15} \left (-5+3 i \sqrt {15}-4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}+\frac {4 i \exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{3 \sqrt {15} \left (5+3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}\right ) \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ &=3 \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{x \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\frac {1}{3} \left (44 i \sqrt {\frac {5}{3}}\right ) \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (-5+3 i \sqrt {15}-4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\frac {1}{3} \left (44 i \sqrt {\frac {5}{3}}\right ) \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (5+3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\frac {1}{9} \left (17 \left (9-i \sqrt {15}\right )\right ) \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (5+3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\frac {1}{9} \left (17 \left (9+i \sqrt {15}\right )\right ) \int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\left (5-3 i \sqrt {15}+4 x\right ) \log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx+\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log ^2\left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx-\int \frac {\exp \left (\frac {3-x+3 \log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}{\log \left (\frac {-20-5 x-2 x^2}{6 x}\right )}\right )}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 0.87 \begin {gather*} e^{3+\frac {3-x}{\log \left (\frac {1}{6} \left (-5-\frac {20}{x}-2 x\right )\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 42, normalized size = 1.35 \begin {gather*} e^{\left (-\frac {x - 3 \, \log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right ) - 3}{\log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 10.68, size = 34, normalized size = 1.10 \begin {gather*} e^{\left (-\frac {x}{\log \left (-\frac {1}{3} \, x - \frac {10}{3 \, x} - \frac {5}{6}\right )} + \frac {3}{\log \left (-\frac {1}{3} \, x - \frac {10}{3 \, x} - \frac {5}{6}\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 43, normalized size = 1.39
method | result | size |
risch | \({\mathrm e}^{-\frac {-3 \ln \left (\frac {-2 x^{2}-5 x -20}{6 x}\right )-3+x}{\ln \left (\frac {-2 x^{2}-5 x -20}{6 x}\right )}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} - 6 \, x^{2} - {\left (2 \, x^{3} + 5 \, x^{2} + 20 \, x\right )} \log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right ) - 20 \, x + 60\right )} e^{\left (-\frac {x - 3 \, \log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right ) - 3}{\log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right )}\right )}}{{\left (2 \, x^{3} + 5 \, x^{2} + 20 \, x\right )} \log \left (-\frac {2 \, x^{2} + 5 \, x + 20}{6 \, x}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 101, normalized size = 3.26 \begin {gather*} {\mathrm {e}}^{\frac {3}{\ln \left (-\frac {2\,x^2+5\,x+20}{6\,x}\right )}-\frac {x}{\ln \left (-\frac {2\,x^2+5\,x+20}{6\,x}\right )}}\,{\left (-\frac {1}{6\,x}\right )}^{\frac {3}{\ln \left (-\frac {2\,x^2+5\,x+20}{6\,x}\right )}}\,{\left (2\,x^2+5\,x+20\right )}^{\frac {3}{\ln \left (-\frac {2\,x^2+5\,x+20}{6\,x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 42, normalized size = 1.35 \begin {gather*} e^{\frac {- x + 3 \log {\left (\frac {- \frac {x^{2}}{3} - \frac {5 x}{6} - \frac {10}{3}}{x} \right )} + 3}{\log {\left (\frac {- \frac {x^{2}}{3} - \frac {5 x}{6} - \frac {10}{3}}{x} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________