Optimal. Leaf size=27 \[ e^{10}+3 x+\frac {(4-x) x}{-3-e^x+x+x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15+3 e^{2 x}-12 x-20 x^2+6 x^3+3 x^4+e^x \left (14-7 x^2\right )}{9+e^{2 x}-6 x-5 x^2+2 x^3+x^4+e^x \left (6-2 x-2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15+3 e^{2 x}-12 x-20 x^2+6 x^3+3 x^4-7 e^x \left (-2+x^2\right )}{\left (3+e^x-x-x^2\right )^2} \, dx\\ &=\int \left (3-\frac {4-6 x+x^2}{3+e^x-x-x^2}-\frac {x \left (16-5 x^2+x^3\right )}{\left (-3-e^x+x+x^2\right )^2}\right ) \, dx\\ &=3 x-\int \frac {4-6 x+x^2}{3+e^x-x-x^2} \, dx-\int \frac {x \left (16-5 x^2+x^3\right )}{\left (-3-e^x+x+x^2\right )^2} \, dx\\ &=3 x-\int \left (\frac {16 x}{\left (-3-e^x+x+x^2\right )^2}-\frac {5 x^3}{\left (-3-e^x+x+x^2\right )^2}+\frac {x^4}{\left (-3-e^x+x+x^2\right )^2}\right ) \, dx-\int \left (\frac {4}{3+e^x-x-x^2}+\frac {6 x}{-3-e^x+x+x^2}-\frac {x^2}{-3-e^x+x+x^2}\right ) \, dx\\ &=3 x-4 \int \frac {1}{3+e^x-x-x^2} \, dx+5 \int \frac {x^3}{\left (-3-e^x+x+x^2\right )^2} \, dx-6 \int \frac {x}{-3-e^x+x+x^2} \, dx-16 \int \frac {x}{\left (-3-e^x+x+x^2\right )^2} \, dx-\int \frac {x^4}{\left (-3-e^x+x+x^2\right )^2} \, dx+\int \frac {x^2}{-3-e^x+x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 0.81 \begin {gather*} x \left (3-\frac {-4+x}{-3-e^x+x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 32, normalized size = 1.19 \begin {gather*} \frac {3 \, x^{3} + 2 \, x^{2} - 3 \, x e^{x} - 5 \, x}{x^{2} + x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 32, normalized size = 1.19 \begin {gather*} \frac {3 \, x^{3} + 2 \, x^{2} - 3 \, x e^{x} - 5 \, x}{x^{2} + x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.85
method | result | size |
risch | \(3 x -\frac {\left (x -4\right ) x}{x^{2}-3-{\mathrm e}^{x}+x}\) | \(23\) |
norman | \(\frac {-5 \,{\mathrm e}^{x}+7 x^{2}+3 x^{3}-3 \,{\mathrm e}^{x} x -15}{x^{2}-3-{\mathrm e}^{x}+x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 32, normalized size = 1.19 \begin {gather*} \frac {3 \, x^{3} + 2 \, x^{2} - 3 \, x e^{x} - 5 \, x}{x^{2} + x - e^{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 25, normalized size = 0.93 \begin {gather*} 3\,x-\frac {{\mathrm {e}}^x-5\,x+3}{x-{\mathrm {e}}^x+x^2-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.70 \begin {gather*} 3 x + \frac {x^{2} - 4 x}{- x^{2} - x + e^{x} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________