Optimal. Leaf size=17 \[ \frac {2}{3} x^2 \left (x+\frac {1}{\left (x^2+\log (x)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-4 x^3+6 x^8+\left (4 x+18 x^6\right ) \log (x)+18 x^4 \log ^2(x)+6 x^2 \log ^3(x)}{3 x^6+9 x^4 \log (x)+9 x^2 \log ^2(x)+3 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (-2-2 x^2+3 x^7+\left (2+9 x^5\right ) \log (x)+9 x^3 \log ^2(x)+3 x \log ^3(x)\right )}{3 \left (x^2+\log (x)\right )^3} \, dx\\ &=\frac {2}{3} \int \frac {x \left (-2-2 x^2+3 x^7+\left (2+9 x^5\right ) \log (x)+9 x^3 \log ^2(x)+3 x \log ^3(x)\right )}{\left (x^2+\log (x)\right )^3} \, dx\\ &=\frac {2}{3} \int \left (3 x^2+\frac {2 x \left (-1-2 x^2\right )}{\left (x^2+\log (x)\right )^3}+\frac {2 x}{\left (x^2+\log (x)\right )^2}\right ) \, dx\\ &=\frac {2 x^3}{3}+\frac {4}{3} \int \frac {x \left (-1-2 x^2\right )}{\left (x^2+\log (x)\right )^3} \, dx+\frac {4}{3} \int \frac {x}{\left (x^2+\log (x)\right )^2} \, dx\\ &=\frac {2 x^3}{3}+\frac {4}{3} \int \frac {x}{\left (x^2+\log (x)\right )^2} \, dx+\frac {4}{3} \int \left (-\frac {x}{\left (x^2+\log (x)\right )^3}-\frac {2 x^3}{\left (x^2+\log (x)\right )^3}\right ) \, dx\\ &=\frac {2 x^3}{3}-\frac {4}{3} \int \frac {x}{\left (x^2+\log (x)\right )^3} \, dx+\frac {4}{3} \int \frac {x}{\left (x^2+\log (x)\right )^2} \, dx-\frac {8}{3} \int \frac {x^3}{\left (x^2+\log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 20, normalized size = 1.18 \begin {gather*} \frac {2}{3} \left (x^3+\frac {x^2}{\left (x^2+\log (x)\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 41, normalized size = 2.41 \begin {gather*} \frac {2 \, {\left (x^{7} + 2 \, x^{5} \log \relax (x) + x^{3} \log \relax (x)^{2} + x^{2}\right )}}{3 \, {\left (x^{4} + 2 \, x^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 55, normalized size = 3.24 \begin {gather*} \frac {2}{3} \, x^{3} + \frac {2 \, {\left (2 \, x^{4} + x^{2}\right )}}{3 \, {\left (2 \, x^{6} + 4 \, x^{4} \log \relax (x) + x^{4} + 2 \, x^{2} \log \relax (x)^{2} + 2 \, x^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 20, normalized size = 1.18
method | result | size |
risch | \(\frac {2 x^{3}}{3}+\frac {2 x^{2}}{3 \left (\ln \relax (x )+x^{2}\right )^{2}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.58, size = 41, normalized size = 2.41 \begin {gather*} \frac {2 \, {\left (x^{7} + 2 \, x^{5} \log \relax (x) + x^{3} \log \relax (x)^{2} + x^{2}\right )}}{3 \, {\left (x^{4} + 2 \, x^{2} \log \relax (x) + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 19, normalized size = 1.12 \begin {gather*} \frac {2\,x^2}{3\,{\left (\ln \relax (x)+x^2\right )}^2}+\frac {2\,x^3}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 31, normalized size = 1.82 \begin {gather*} \frac {2 x^{3}}{3} + \frac {2 x^{2}}{3 x^{4} + 6 x^{2} \log {\relax (x )} + 3 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________