Optimal. Leaf size=24 \[ \frac {x}{-15-16 x^2 (-x+4 x (x+\log (5 x)))} \]
________________________________________________________________________________________
Rubi [F] time = 0.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15+32 x^3+192 x^4+128 x^3 \log (5 x)}{225-480 x^3+1920 x^4+256 x^6-2048 x^7+4096 x^8+\left (1920 x^3-2048 x^6+8192 x^7\right ) \log (5 x)+4096 x^6 \log ^2(5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15+32 x^3+192 x^4+128 x^3 \log (5 x)}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2} \, dx\\ &=\int \left (\frac {-45+64 x^3+64 x^4}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2}+\frac {2}{15-16 x^3+64 x^4+64 x^3 \log (5 x)}\right ) \, dx\\ &=2 \int \frac {1}{15-16 x^3+64 x^4+64 x^3 \log (5 x)} \, dx+\int \frac {-45+64 x^3+64 x^4}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2} \, dx\\ &=2 \int \frac {1}{15-16 x^3+64 x^4+64 x^3 \log (5 x)} \, dx+\int \left (-\frac {45}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2}+\frac {64 x^3}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2}+\frac {64 x^4}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{15-16 x^3+64 x^4+64 x^3 \log (5 x)} \, dx-45 \int \frac {1}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2} \, dx+64 \int \frac {x^3}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2} \, dx+64 \int \frac {x^4}{\left (15-16 x^3+64 x^4+64 x^3 \log (5 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x}{15-16 x^3+64 x^4+64 x^3 \log (5 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x}{64 \, x^{4} + 64 \, x^{3} \log \left (5 \, x\right ) - 16 \, x^{3} + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x}{64 \, x^{4} + 64 \, x^{3} \log \left (5 \, x\right ) - 16 \, x^{3} + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.12
method | result | size |
risch | \(-\frac {x}{64 x^{3} \ln \left (5 x \right )+64 x^{4}-16 x^{3}+15}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 30, normalized size = 1.25 \begin {gather*} -\frac {x}{64 \, x^{4} + 16 \, x^{3} {\left (4 \, \log \relax (5) - 1\right )} + 64 \, x^{3} \log \relax (x) + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.05, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x}{64\,x^3\,\ln \left (5\,x\right )-16\,x^3+64\,x^4+15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 1.00 \begin {gather*} - \frac {x}{64 x^{4} + 64 x^{3} \log {\left (5 x \right )} - 16 x^{3} + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________