Optimal. Leaf size=23 \[ x+\frac {4 e^{5-5 (-2-x)+x}}{3 (2+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 18, normalized size of antiderivative = 0.78, number of steps used = 5, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {27, 12, 6688, 2197} \begin {gather*} x+\frac {4 e^{6 x+15}}{3 (x+2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2197
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12+12 x+3 x^2+e^{15+6 x} (44+24 x)}{3 (2+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {12+12 x+3 x^2+e^{15+6 x} (44+24 x)}{(2+x)^2} \, dx\\ &=\frac {1}{3} \int \left (3+\frac {4 e^{15+6 x} (11+6 x)}{(2+x)^2}\right ) \, dx\\ &=x+\frac {4}{3} \int \frac {e^{15+6 x} (11+6 x)}{(2+x)^2} \, dx\\ &=x+\frac {4 e^{15+6 x}}{3 (2+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 18, normalized size = 0.78 \begin {gather*} x+\frac {4 e^{15+6 x}}{3 (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 1.04 \begin {gather*} \frac {3 \, x^{2} + 6 \, x + 4 \, e^{\left (6 \, x + 15\right )}}{3 \, {\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 24, normalized size = 1.04 \begin {gather*} \frac {3 \, x^{2} + 6 \, x + 4 \, e^{\left (6 \, x + 15\right )}}{3 \, {\left (x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 16, normalized size = 0.70
method | result | size |
risch | \(x +\frac {4 \,{\mathrm e}^{6 x +15}}{3 \left (2+x \right )}\) | \(16\) |
derivativedivides | \(x +\frac {5}{2}+\frac {8 \,{\mathrm e}^{6 x +15}}{6 x +12}\) | \(19\) |
default | \(x +\frac {5}{2}+\frac {8 \,{\mathrm e}^{6 x +15}}{6 x +12}\) | \(19\) |
norman | \(\frac {x^{2}+\frac {4 \,{\mathrm e}^{6 x +15}}{3}-4}{2+x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \frac {4 \, x e^{\left (6 \, x + 15\right )}}{3 \, {\left (x^{2} + 4 \, x + 4\right )}} - \frac {44 \, e^{3} E_{2}\left (-6 \, x - 12\right )}{3 \, {\left (x + 2\right )}} + 8 \, \int \frac {{\left (x e^{15} - 2 \, e^{15}\right )} e^{\left (6 \, x\right )}}{6 \, {\left (x^{3} + 6 \, x^{2} + 12 \, x + 8\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.97, size = 17, normalized size = 0.74 \begin {gather*} x+\frac {4\,{\mathrm {e}}^{6\,x}\,{\mathrm {e}}^{15}}{3\,\left (x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.61 \begin {gather*} x + \frac {4 e^{6 x + 15}}{3 x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________