Optimal. Leaf size=30 \[ x \left (-4+x-\frac {5-\frac {3 x^2}{(6-\log (\log (x)))^2}}{-1-x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x^2+6 x^3+\left (-216+1296 x+54 x^2-396 x^3\right ) \log (x)+\left (108-648 x-9 x^2+210 x^3\right ) \log (x) \log (\log (x))+\left (-18+108 x-36 x^3\right ) \log (x) \log ^2(\log (x))+\left (1-6 x+2 x^3\right ) \log (x) \log ^3(\log (x))}{\left (-216-432 x-216 x^2\right ) \log (x)+\left (108+216 x+108 x^2\right ) \log (x) \log (\log (x))+\left (-18-36 x-18 x^2\right ) \log (x) \log ^2(\log (x))+\left (1+2 x+x^2\right ) \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6 x^2 (1+x)-\log (x) (-6+\log (\log (x))) \left (36-216 x-9 x^2+66 x^3-12 \left (1-6 x+2 x^3\right ) \log (\log (x))+\left (1-6 x+2 x^3\right ) \log ^2(\log (x))\right )}{(1+x)^2 \log (x) (6-\log (\log (x)))^3} \, dx\\ &=\int \left (\frac {1-6 x+2 x^3}{(1+x)^2}+\frac {6 x^2}{(1+x) \log (x) (-6+\log (\log (x)))^3}-\frac {3 x^2 (3+2 x)}{(1+x)^2 (-6+\log (\log (x)))^2}\right ) \, dx\\ &=-\left (3 \int \frac {x^2 (3+2 x)}{(1+x)^2 (-6+\log (\log (x)))^2} \, dx\right )+6 \int \frac {x^2}{(1+x) \log (x) (-6+\log (\log (x)))^3} \, dx+\int \frac {1-6 x+2 x^3}{(1+x)^2} \, dx\\ &=-\left (3 \int \left (-\frac {1}{(-6+\log (\log (x)))^2}+\frac {2 x}{(-6+\log (\log (x)))^2}+\frac {1}{(1+x)^2 (-6+\log (\log (x)))^2}\right ) \, dx\right )+6 \int \left (-\frac {1}{\log (x) (-6+\log (\log (x)))^3}+\frac {x}{\log (x) (-6+\log (\log (x)))^3}+\frac {1}{(1+x) \log (x) (-6+\log (\log (x)))^3}\right ) \, dx+\int \left (-4+2 x+\frac {5}{(1+x)^2}\right ) \, dx\\ &=-4 x+x^2-\frac {5}{1+x}+3 \int \frac {1}{(-6+\log (\log (x)))^2} \, dx-3 \int \frac {1}{(1+x)^2 (-6+\log (\log (x)))^2} \, dx-6 \int \frac {1}{\log (x) (-6+\log (\log (x)))^3} \, dx+6 \int \frac {x}{\log (x) (-6+\log (\log (x)))^3} \, dx+6 \int \frac {1}{(1+x) \log (x) (-6+\log (\log (x)))^3} \, dx-6 \int \frac {x}{(-6+\log (\log (x)))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 1.03 \begin {gather*} -4 x+x^2-\frac {5}{1+x}-\frac {3 x^3}{(1+x) (-6+\log (\log (x)))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 77, normalized size = 2.57 \begin {gather*} \frac {33 \, x^{3} + {\left (x^{3} - 3 \, x^{2} - 4 \, x - 5\right )} \log \left (\log \relax (x)\right )^{2} - 108 \, x^{2} - 12 \, {\left (x^{3} - 3 \, x^{2} - 4 \, x - 5\right )} \log \left (\log \relax (x)\right ) - 144 \, x - 180}{{\left (x + 1\right )} \log \left (\log \relax (x)\right )^{2} - 12 \, {\left (x + 1\right )} \log \left (\log \relax (x)\right ) + 36 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 49, normalized size = 1.63 \begin {gather*} x^{2} - \frac {3 \, x^{3}}{x \log \left (\log \relax (x)\right )^{2} - 12 \, x \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2} + 36 \, x - 12 \, \log \left (\log \relax (x)\right ) + 36} - 4 \, x - \frac {5}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 38, normalized size = 1.27
method | result | size |
risch | \(\frac {x^{3}-3 x^{2}-4 x -5}{x +1}-\frac {3 x^{3}}{\left (x +1\right ) \left (\ln \left (\ln \relax (x )\right )-6\right )^{2}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 77, normalized size = 2.57 \begin {gather*} \frac {33 \, x^{3} + {\left (x^{3} - 3 \, x^{2} - 4 \, x - 5\right )} \log \left (\log \relax (x)\right )^{2} - 108 \, x^{2} - 12 \, {\left (x^{3} - 3 \, x^{2} - 4 \, x - 5\right )} \log \left (\log \relax (x)\right ) - 144 \, x - 180}{{\left (x + 1\right )} \log \left (\log \relax (x)\right )^{2} - 12 \, {\left (x + 1\right )} \log \left (\log \relax (x)\right ) + 36 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 259, normalized size = 8.63 \begin {gather*} x^2-\frac {5}{x+1}-\frac {\frac {3\,x\,\left (9\,x^2\,\ln \relax (x)+6\,x^3\,\ln \relax (x)+x^2+x^3\right )}{{\left (x+1\right )}^2}-\frac {3\,x\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (2\,x^3+3\,x^2\right )}{2\,{\left (x+1\right )}^2}}{{\ln \left (\ln \relax (x)\right )}^2-12\,\ln \left (\ln \relax (x)\right )+36}-\frac {\frac {3\,x\,\ln \relax (x)\,\left (54\,x^2\,\ln \relax (x)+66\,x^3\,\ln \relax (x)+24\,x^4\,\ln \relax (x)+21\,x^2+35\,x^3+14\,x^4\right )}{2\,{\left (x+1\right )}^3}-\frac {3\,x\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (9\,x^2\,\ln \relax (x)+11\,x^3\,\ln \relax (x)+4\,x^4\,\ln \relax (x)+3\,x^2+5\,x^3+2\,x^4\right )}{2\,{\left (x+1\right )}^3}}{\ln \left (\ln \relax (x)\right )-6}-4\,x+{\ln \relax (x)}^2\,\left (\frac {-6\,x^5-\frac {33\,x^4}{2}+\frac {81\,x^2}{2}+\frac {81\,x}{2}+\frac {27}{2}}{x^3+3\,x^2+3\,x+1}-\frac {27}{2}\right )-\frac {\ln \relax (x)\,\left (3\,x^4+\frac {9\,x^3}{2}\right )}{x^2+2\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 42, normalized size = 1.40 \begin {gather*} - \frac {3 x^{3}}{36 x + \left (- 12 x - 12\right ) \log {\left (\log {\relax (x )} \right )} + \left (x + 1\right ) \log {\left (\log {\relax (x )} \right )}^{2} + 36} + x^{2} - 4 x - \frac {5}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________