Optimal. Leaf size=29 \[ \frac {1}{3} \left (-5-x+\log \left (-2-\frac {4 (5+5 (3+x))}{e^4+\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.77, antiderivative size = 32, normalized size of antiderivative = 1.10, number of steps used = 8, number of rules used = 7, integrand size = 97, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.072, Rules used = {6, 6688, 12, 6742, 2302, 29, 6684} \begin {gather*} -\frac {x}{3}-\frac {1}{3} \log \left (\log (x)+e^4\right )+\frac {1}{3} \log \left (10 x+\log (x)+e^4+40\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 2302
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-40+\left (-10-e^8\right ) x+e^4 \left (-30 x-10 x^2\right )+\left (-30 x-2 e^4 x-10 x^2\right ) \log (x)-x \log ^2(x)}{3 e^8 x+e^4 \left (120 x+30 x^2\right )+\left (120 x+6 e^4 x+30 x^2\right ) \log (x)+3 x \log ^2(x)} \, dx\\ &=\int \frac {-40-\left (10+30 e^4+e^8\right ) x-10 e^4 x^2-2 x \left (e^4+5 (3+x)\right ) \log (x)-x \log ^2(x)}{3 x \left (e^4+\log (x)\right ) \left (e^4+10 (4+x)+\log (x)\right )} \, dx\\ &=\frac {1}{3} \int \frac {-40-\left (10+30 e^4+e^8\right ) x-10 e^4 x^2-2 x \left (e^4+5 (3+x)\right ) \log (x)-x \log ^2(x)}{x \left (e^4+\log (x)\right ) \left (e^4+10 (4+x)+\log (x)\right )} \, dx\\ &=\frac {1}{3} \int \left (-1-\frac {1}{x \left (e^4+\log (x)\right )}+\frac {1+10 x}{x \left (40 \left (1+\frac {e^4}{40}\right )+10 x+\log (x)\right )}\right ) \, dx\\ &=-\frac {x}{3}-\frac {1}{3} \int \frac {1}{x \left (e^4+\log (x)\right )} \, dx+\frac {1}{3} \int \frac {1+10 x}{x \left (40 \left (1+\frac {e^4}{40}\right )+10 x+\log (x)\right )} \, dx\\ &=-\frac {x}{3}+\frac {1}{3} \log \left (40+e^4+10 x+\log (x)\right )-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^4+\log (x)\right )\\ &=-\frac {x}{3}-\frac {1}{3} \log \left (e^4+\log (x)\right )+\frac {1}{3} \log \left (40+e^4+10 x+\log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 0.97 \begin {gather*} \frac {1}{3} \left (-x-\log \left (e^4+\log (x)\right )+\log \left (40+e^4+10 x+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 24, normalized size = 0.83 \begin {gather*} -\frac {1}{3} \, x + \frac {1}{3} \, \log \left (10 \, x + e^{4} + \log \relax (x) + 40\right ) - \frac {1}{3} \, \log \left (e^{4} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 28, normalized size = 0.97 \begin {gather*} -\frac {1}{3} \, x + \frac {1}{3} \, \log \left (-10 \, x - e^{4} - \log \relax (x) - 40\right ) - \frac {1}{3} \, \log \left (e^{4} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.86
method | result | size |
norman | \(-\frac {x}{3}-\frac {\ln \left ({\mathrm e}^{4}+\ln \relax (x )\right )}{3}+\frac {\ln \left ({\mathrm e}^{4}+10 x +\ln \relax (x )+40\right )}{3}\) | \(25\) |
risch | \(-\frac {x}{3}-\frac {\ln \left ({\mathrm e}^{4}+\ln \relax (x )\right )}{3}+\frac {\ln \left ({\mathrm e}^{4}+10 x +\ln \relax (x )+40\right )}{3}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 24, normalized size = 0.83 \begin {gather*} -\frac {1}{3} \, x + \frac {1}{3} \, \log \left (10 \, x + e^{4} + \log \relax (x) + 40\right ) - \frac {1}{3} \, \log \left (e^{4} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {x\,{\ln \relax (x)}^2+\left (30\,x+2\,x\,{\mathrm {e}}^4+10\,x^2\right )\,\ln \relax (x)+10\,x+{\mathrm {e}}^4\,\left (10\,x^2+30\,x\right )+x\,{\mathrm {e}}^8+40}{3\,x\,{\ln \relax (x)}^2+\left (120\,x+6\,x\,{\mathrm {e}}^4+30\,x^2\right )\,\ln \relax (x)+{\mathrm {e}}^4\,\left (30\,x^2+120\,x\right )+3\,x\,{\mathrm {e}}^8} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 27, normalized size = 0.93 \begin {gather*} - \frac {x}{3} - \frac {\log {\left (\log {\relax (x )} + e^{4} \right )}}{3} + \frac {\log {\left (10 x + \log {\relax (x )} + 40 + e^{4} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________