Optimal. Leaf size=26 \[ \left (5-e^{10+2 e^{2 x} \log ^2\left (\frac {2}{x}\right )} x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.75, antiderivative size = 173, normalized size of antiderivative = 6.65, number of steps used = 3, number of rules used = 1, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2288} \begin {gather*} \frac {e^{4 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (e^{2 x+20} x \log \left (\frac {2}{x}\right )-e^{2 x+20} x^2 \log ^2\left (\frac {2}{x}\right )\right )}{\frac {e^{2 x} \log \left (\frac {2}{x}\right )}{x}-e^{2 x} \log ^2\left (\frac {2}{x}\right )}-\frac {10 e^{2 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (e^{2 x+10} \log \left (\frac {2}{x}\right )-e^{2 x+10} x \log ^2\left (\frac {2}{x}\right )\right )}{\frac {e^{2 x} \log \left (\frac {2}{x}\right )}{x}-e^{2 x} \log ^2\left (\frac {2}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{2 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (-10 e^{10}+40 e^{10+2 x} \log \left (\frac {2}{x}\right )-40 e^{10+2 x} x \log ^2\left (\frac {2}{x}\right )\right ) \, dx+\int e^{4 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (2 e^{20} x-8 e^{20+2 x} x \log \left (\frac {2}{x}\right )+8 e^{20+2 x} x^2 \log ^2\left (\frac {2}{x}\right )\right ) \, dx\\ &=-\frac {10 e^{2 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (e^{10+2 x} \log \left (\frac {2}{x}\right )-e^{10+2 x} x \log ^2\left (\frac {2}{x}\right )\right )}{\frac {e^{2 x} \log \left (\frac {2}{x}\right )}{x}-e^{2 x} \log ^2\left (\frac {2}{x}\right )}+\frac {e^{4 e^{2 x} \log ^2\left (\frac {2}{x}\right )} \left (e^{20+2 x} x \log \left (\frac {2}{x}\right )-e^{20+2 x} x^2 \log ^2\left (\frac {2}{x}\right )\right )}{\frac {e^{2 x} \log \left (\frac {2}{x}\right )}{x}-e^{2 x} \log ^2\left (\frac {2}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.18, size = 46, normalized size = 1.77 \begin {gather*} e^{2 \left (5+e^{2 x} \log ^2\left (\frac {2}{x}\right )\right )} x \left (-10+e^{2 \left (5+e^{2 x} \log ^2\left (\frac {2}{x}\right )\right )} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 42, normalized size = 1.62 \begin {gather*} x^{2} e^{\left (4 \, e^{\left (2 \, x\right )} \log \left (\frac {2}{x}\right )^{2} + 20\right )} - 10 \, x e^{\left (2 \, e^{\left (2 \, x\right )} \log \left (\frac {2}{x}\right )^{2} + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (4 \, x^{2} e^{\left (2 \, x + 20\right )} \log \left (\frac {2}{x}\right )^{2} - 4 \, x e^{\left (2 \, x + 20\right )} \log \left (\frac {2}{x}\right ) + x e^{20}\right )} e^{\left (4 \, e^{\left (2 \, x\right )} \log \left (\frac {2}{x}\right )^{2}\right )} - 10 \, {\left (4 \, x e^{\left (2 \, x + 10\right )} \log \left (\frac {2}{x}\right )^{2} - 4 \, e^{\left (2 \, x + 10\right )} \log \left (\frac {2}{x}\right ) + e^{10}\right )} e^{\left (2 \, e^{\left (2 \, x\right )} \log \left (\frac {2}{x}\right )^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \left (8 x^{2} {\mathrm e}^{20} {\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )^{2}-8 x \,{\mathrm e}^{20} {\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )+2 x \,{\mathrm e}^{20}\right ) {\mathrm e}^{4 \,{\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )^{2}}+\left (-40 x \,{\mathrm e}^{10} {\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )^{2}+40 \,{\mathrm e}^{10} {\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )-10 \,{\mathrm e}^{10}\right ) {\mathrm e}^{2 \,{\mathrm e}^{2 x} \ln \left (\frac {2}{x}\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.72, size = 74, normalized size = 2.85 \begin {gather*} x^{2} e^{\left (4 \, e^{\left (2 \, x\right )} \log \relax (2)^{2} - 8 \, e^{\left (2 \, x\right )} \log \relax (2) \log \relax (x) + 4 \, e^{\left (2 \, x\right )} \log \relax (x)^{2} + 20\right )} - 10 \, x e^{\left (2 \, e^{\left (2 \, x\right )} \log \relax (2)^{2} - 4 \, e^{\left (2 \, x\right )} \log \relax (2) \log \relax (x) + 2 \, e^{\left (2 \, x\right )} \log \relax (x)^{2} + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 87, normalized size = 3.35 \begin {gather*} -x\,{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,{\ln \left (\frac {1}{x}\right )}^2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}\,\left (\frac {10}{{\left (\frac {1}{x}\right )}^{4\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)}}-x\,{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,{\ln \left (\frac {1}{x}\right )}^2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}\,{\ln \relax (2)}^2}\right )\,{\left (\frac {1}{x}\right )}^{8\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 20.19, size = 42, normalized size = 1.62 \begin {gather*} x^{2} e^{20} e^{4 e^{2 x} \log {\left (\frac {2}{x} \right )}^{2}} - 10 x e^{10} e^{2 e^{2 x} \log {\left (\frac {2}{x} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________